
AD-A095 b36 ROME AIR DEVELOPMENT CENTER GRIFFISS AFB NY F/e 17/2
COMMUNICATIONS PROCESSOR OPERATING SYSTEM STUDY. EXECUTIVE SUMM—ETC(U)
NOV 80 J GITLIN

UNCLASSIFIED RADC-TR-80-316 NL

^

y

• r »

RADC-TR-80-316
In-HouM Report
November 1980

LEVELS
EXECUTIVE SUMMARY OF
COMMUNICATIONS PROCESSOR
OPERATING SYSTEM STUDY

Julian Gitlih SPTIC
ELECTE«^
FEfi 2 6 1981^

- E
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

"a
O

3
ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griff iss Air Force Base, New York 13441

81 2 2 6 044
'•'--"-•

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-80-316 has been reviewed and is approved for publication.

APPROVED: \^vJ_ CK-'>CV9C=C1

RICHARD A. NORTHRUP
Assistant Chief, Telecommunications Branch
Communications & Control Division

APPROVED: ^j^^k^^

FRED I. DIAMOND, Technical Director
Communications & Control Division

FOR THE COMMANDER:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (DCLT), Griffiss AFB NY 13441. This will assist us in/ maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

11 r in »Aft—*fa

i

'•h

$

UNCLASSIFIED

RADC-TR-8^-316y (^J AV\ft095 5~3(?

REPORT DOCUMENTATION PAGE
1. REPORT NUMBER 2 GOVT ACCESSION NO

« II Tk6 (mad Subtitle)

EXECUTIVE^SUMMARY 0F> COMMUNICATIONS
PROCESSOR OPERATING SYSTEM $t - •

>X W tdLl - '•• •
7 AUTHORf«!

! ,

Julian Gitlin 1
^

1 PERFORMING ORGANIZATION NAME AND ADDRESS
Rome Air Development Center (DCLT)
Griffiss AFB NY 13441

II. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (DCLT)
Griffiss AFB NY 13441

-HJ Aj

ID-
14 MONITORING ^GENCY NAME * ADDRESSflf dlttmrmnt Irom Controlling Ollicm)

Same

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3 RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT S PERIOD COVEREO

In-House Report
6 PERFORMING OIC REPORT NUMBER

N/A
B CONTRACT OR GRANT NUM8F.Rn)

N/A

10 PROGRAM ELEMENT. PROJECT. TASK
AREA « WORK UNIT NUMBERS

33126t
20r22/0OOl jPffi
i2^ja£RafiT_5ATE

Nov /r^rs v
II NUMBER OF PAGES

so, qXifi-j
fifi.

15 SECURITY CLASS, (ol thlm import)

UNCLASSIFIED
IS«. DECLASSIFlCATION DOWNGRADING
„ ., SCHEDULE
N/A

16 DISTRIBUTION STATEMENT (ol this Kmport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol the mbmtrmct mntmrmd tn Block 20, II dlttmrmnt Irom Kmport)

Same

IB SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continum on rmvmrmm midm It nmcmmmmry and Idmntlty by block numbmr)

Switch
Operating system
Software

20 ABSTRACT (Continum on |BM>—' mldm It nmcmmmmry mrnd Idmntlty by block numbmr)

This report is an executive summary prepared bv the RADC Program Manager
for the Communications Processing Operating System Program accomplished
by Plessey Fairfield and Data Industries for RADC under Contract
F30602-76-C-0456. The CPOS final report consists of 9 volumes which
include the major technical areas of concern in designing a secure,
accountable and releable operating system that would control the hardware'
software resources of an integrated switching node for the Defense ^__^

DO ljAN*71 1473 EOITION OF I NOV •» IS OBSOLETE UNCLASSIFIED A
SECURITY CLASSIFICATION OF THIS PAGE (Wrtmn Dal« Fn,.,.d>

<?n
-•

lOfC

—._

—

\

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGEfHTiwi Dmlm Enffd)

Communications System in the 1990's. The CPOS final report consists of
9 volumes: J

1.
Analysis

2.
3.
4.
5.
6.
7.
8.
9.

Communications Switch Operating System Study Requirements
8 I - > $ I :

Software Reliability Study i-_ j W /,
Security Considerations Study
Operating System Survey /• I- B S '
Candidate Selection to Implementation Methods Study .
Verification and Validation
Design Specification
Experimentation. /;

6 •- '

n
1

/
•

•

This executive summary condenses the large amount of material generated,
and gives a detailed summary explanation and comments on Volumes 1-7
which comprise the Communications Processor Operating System Report.
The information contained herein covers the type of security, account-
ability, reliability, and verifiability needed to control resources of
an integrated communications node composed of circuit, message and
packet switching.

Accession For

NTIS~~GRA&I
DTIC TAB
Unannounced
Justification.

a

Distribution/
Availability Codes_

(Avail and/or
' Special

UNCLASSIFIED
SECURITY CLASSIFICATION O' T"" PUCfWuo n«t» ».,....*

«JE»**'

—

'

TABLE OF CONTENTS

Section Title Page

1.0 INTRODUCTION 1-1

2.0 REQUIREMENTS ANALYSIS 2-1
2.1 CIRCUIT SWITCH PROCESSING 2-1
2.2 STORE AND FORWARD PROCESSING 2-2
2.3 PACKET SWITCH PROCESSING 2-2
2.4 CLASSMARKS 2-3
2.5 CLASS II USER REQUIREMENTS 2-4
2.6 CLASS III USER REQUIREMENTS 2-4
2.7 TECHNICAL CONTROL 2-5
2.8 UDS APPLICATION SOFTWARE REQUIREMENTS 2-5
2.9 TRAFFIC MODEL 2-6

3.0 SOFTWARE RELIABILITY 3-1
3.1 ERROR ANALYSIS 3-1
3.2 SOFTWARE RELIABILITY MODELS 3-3
3.3 STRUCTURED PROGRAMMING 3-5
3.4 LANGUAGE DESIGN FOR RELIABLE SOFTWARE 3-6
3.5 MICROCODE 3-6
3.6 FAULT TOLERANT PROGRAMMING TECHNIQUES 3-7
3.7 SMALL PROTECTION DOMAINS 3-8
3.8 INTEGRITY 3-9

4.0 SECURITY CONSIDERATION 4-1
4.1 USER ENVIRONMENT 4-1
4.2 UNIFIED DIGITAL SWITCH ENVIRONMENT 4-2
4.3 CPS ARCHITECTURE CONSIDERATIONS 4-3
4.4 SECURITY KERNEL PROTECTION MECHANISM 4-3
4.5 CAPABILITIES PROTECTION MECHANISM 4-5
4.6 KEY-LOCK PROTECTION TECHNIQUES 4-8
4.7 SEGMENTED VIRTUAL STORAGE 4-9
4.8 ENCRYPTION OF SENSITIVE FILES 4-10
4.9 MEMORY RESIDUE ELIMINATION 4-11
4.10 KEY DISTRIBUTION TECHNIQUES 4-12
4.11 USER IDENTIFICATION 4-12

— • —I In» MMMMMiMU

—'

TABLE OF CONTENTS (Cont.)

Section Title Page

5.0 OPERATING SYSTEM SURVEY 5-1
5.1 HYDRA 5-1
5.2 SECURE UNIX 5-2
5.3 ESD/MITRE SECURITY KERNEL 5-3
5.4 SYSTEM 250 RECOVERABLE OPERATING SYSTEM 5-4
5.5 PTARMIGAN 5-4
5.6 MULTICS 5-5
5.7 BILL 1A PROCESSOR OPERATING SYSTEM 5-6
5.8 PLURIBUS 5-7

6.0 CANDIDATE SELECTION 6-1
6.1 DESIRED OPERATING SYSTEM CHARACTERISTICS 6-1
6.2 SECURE UNIX 6-4
6.3 SECURITY KERNEL FOR THE PDP-11/45 6-4
6.4 SYSTEM 250 RECOVERABLE OPERATING SYSTEM 6-4
6.5 PLURIBUS 6-5
6.6 HYDRA 6-6
6.7 TANDEM/16 GUARDIAN OPERATING SYSTEM 6-6
6.8 CONCLUSIONS 6-7

7.0 IMPLEMENTATION METHODS 7-1
7.1 DOD STANDARDS AND GUIDELINES 7-1
7.2 PROGRAM MANAGEMENT 7-2
7.3 PROGRAM DESIGN 7-2
7.3.1 Modular Design 7-3
7.3.2 Top-Down Design 7-5
7.3.3 Levels of Abstraction 7-6
7.4 DESIGN AIDS FOR IMPLEMENTATION 7-7
7.5 PROGRAMMING PRACTICES 7-11
7.5.1 Higher Order Languages (HOL) 7-12
7.5.2 Structured Programming 7-13
7.5.3 Top-Down Programming 7-14
7.5.4 Debugging Tools 7-15
7.5.5 Program Support Library 7-17
7.6 FORMAL DESIGN METHODOLOGY 7-18

L
ii

MM

TABLE OF CONTENTS (Cont.)

Section Title Page

.1

.2

.3

.4

8.0
8.1
8.1
8.1
8.1
8.1
8.2
8.2.1
8.2.2
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5

VERIFICATION AND VALIDATION 8-1
SECURITY VERIFICATION METHODOLOGIES 8-1
Reference Monitor Method 8-1
S.R.I. Method 8-3
Bell-Burke Method 8-4
Denning Method 8-5
SOFTWARE VERIFICATION TECHNIQUES 8-5
Program Proving 8-5
Symbolic Execution 8-6
TESTING 8-8
Test Plans 8-8
Static Testing 8-9
Dynamic Testing 8-10
Debugging 8-10
Performance Testing 8-11

111

—. —. • •• -
J

LIST OF FIGURES AND TABLES

No.

Figure 3-1

Figure 4-1

Figure 4-2

Figure 4-3

Title

Software Cost Allocation

Sample Security Condition

*-Property

Relation of User Classes to Communications/
Computer Facilities

Page

3-2

4-6

4-7

4-13

Table 7-1 Communication Switching System Levels
of Abstraction 7-8

IV

i

— .

1.0 INTRODUCTION

The Communications Processor Operating System Study was performed
by Plessey Fairfield and Data Industries for RADC under contract F30602-76-
C-0456. This program is one of many in a series to meet the DCS requirement
for an advanced communications posture, and due to the technical excellence
of personnel in both companies, especially Robert Waxman of Data Industries,
an outstanding job was accomplished.

The Communications Processor Operating System (CPOS) effort is
one program of a multiple program effort whose purpose is the development
of a Unified Digital Switch (UDS) for strategic communications. This switch
will have the capability to perform circuit, packet and store-and-forward
message switching in an integrated communication complex. The Communications
Processor System (CPS) will control the switching node and will be supported
by an operating system called the Communications Processor Operating System.
It is the Government's intention that this operating system incorporate
the latest advances in computer technology in order to achieve a high degree
of reliability and security. To this end, the effort is divided into 9
tasks which include the major technology areas of concern. The 9 tasks
of the CPOS program were reported in 9 separate volumes as follows:

VOL I Task 1 - Communications Switch Operatinq System Study
Requirements Analysis
Software Reliability Study
Security Considerations Study
Operating System Survey
Candidate Selection
Implementation Methods Study

Task 7 - Verification and Validation
Design Specification
Experimentation.

Because of the large amount of material presented in the volumes
on the above tasks, this Executive Summary is presented, treating each
volume as a separate chapter, to permit readers to select only that task
of immediate interest and to provide a self-contained technical discussion.

The major conclusions and recommendations are contained in this
executive summary. Most important are the recommendations in the area
of reliability and system security. In particular, multilevel communications
security conforming to DoD requirements represents a difficult problem
for the CPOS and requires solutions which are on the fringe of the current
technology. In addition, the need for high reliability is a cause of concern
because of the inexact science of software technology. These concerns
have resulted in heavy emphasis being given to Tasks 2, 3, 6 and 7.

1-1

VOL II Task 2
VOL III Task 3
VOL IV Task 4
VOL V Task 5
VOL VI Task 6
VOL VII Task 7
VOL VIII Task 8
VOL IX Task 9

-

Volume VIII is the system specification for the Communications
Processor Operating System and does not require summary herein. The speci-
fication has been prepared as a stand-alone document suitable for the next
stage of contractual or in-house development of the CPOS.

Similarly, Volume IX presents the results of the experimentation
task and provides the listing of the secure processor simulation. An explanation
of the computer program is presented in narrative form in Volume IX and
is not repeated herein. The simulator is designed to run on the RADC MULTICS
computer system. Further development of the simulator is recommended for
the next phase of CPOS development.

1*2

L J

2.0 REQUIREMENTS ANALYSIS

The first task of the Communications Processor Operating System (CPOS)
was devoted to a requirements analysis. A switching center which performs
circuit, packet and store-and-forward message switching, and which satisfies
the requirements for Department of Defense (DoD) multi-level security, is
unique. It was necessary, therefore, to establish a requirements baseline
as the first step to CPOS development. The results of this task are
reported in Volume I, and are summarized below.

2.1 CIRCUIT SWITCH PROCESSING

The best model available for determining Unified Digital Switch (UDS)
circuit switch requirements is provided by the Defense Communications
System's (DCS) Automatic Voice Network, AUT0V0N. The functions performed in
AUTOVON are similar to those in a commercial telephone switch except for the
military requirement for multi-level precedence and preemption.

The requirements analysis of the circuit switching element of the UDS
is divided into two parts: one explaining the computer related processes
involved, and the other quantifying the traffic load expected. Circuit
switch processes are divided into the following categories:

a. Local call set-up
b. Local call take-down
c. Trunk call set-up
d. Trunk call take-down.

Once a circuit switch call is set up, the circuit switch related soft-
ware processes in the CPS remain dormant until called upon to cause a dis-
connect or to preempt a line or trunk. Therefore, it is important to quan-
tify the number of originating calls per unit time (the number of call dis-
connects per unit time is equal to the number of call originations when
averaged over the busy hour). Data obtained from prior work done for RADC
in related areas were used to calculate the traffic statistics. The results
of the traffic analysis are shown in Figures 2.6-1 through 2.6-4 of Volume I.
The figures show, in graphical form, originating calls in the busy hour and
Erlang loading in the busy hour as a function of the number of switch termin-
ations. The switch ?.izes used range to 6000 terminations.

2-1

2.2 STORE AND FORWARD PROCESSING

Message switch (store-and-forward) networks have been in existence for a
relatively long time. Because of this, procedures used for message switch-
ing are well established and documented. The two systems used to develop the
UDS baseline requirements are the existing DCS Automatic Digital Network
(AUTODIN) and the Tri-Department Tactical Communications Agency (TRI-TAC)
network of AN/TTC-39 switches.

The store-and-forward processing section of Volume I discusses the
functional requirements placed on the UDS by Class I users requiring store-
and-forward service. We have assumed that this element of the UDS will con-
form to the procedures and protocol specified in JANAP 128 and the AUTODIN
Interface document. The functions requiring processor action have been
divided into message initiation, incoming processing, message storage, and
outgoing processing. Traffic statistics for UDS sizing are also presented
based on AUTODIN and TRI-TAC data. The traffic categories specified in Vol-
ume I .'.re:

o Average message length
o Multiple address
o Processing delay (by category)
o Throughput rate
o Retri .val rate
o Message arrival rate
o Traffic distribution by line speed
o Holding time by line speed
o Traffic intensity in the busy hour
o Block length.

2.3 PACKET SWITCH PROCESSING

Volume I recommends that message traffic, including narrative and bulk
traffic, be handled in the packet mode on interswitch trunks. The charac-
teristics of the packet switch signalling protocol are discussed, including
the recommended structure for call establishment, call disconnect, and call
rejection packets. The packet formats for data transfer, interrupts, flow
control, resets, and restarts are also described. We have recommended the
use of the frame level procedures specified by the American National Stand-
ards Institute's (ANSI) Advanced Data Communication Control Procedures
(ADCCP).

Development of packet switch element sizing and traffic projections re-
sult from a less firm base than that used for the store-and-forward element.

2-2

I M III •!•• I n ••••!• 1 rr« in i

This is because less experience is available with this newly emerging tech-
nology and secure military packet switching networks such as AUTODIN II and
SATIN IV are still in the development phase. It seems to us, however, that
the standards, procedures, and protocol developed for AUTODIN II are appli-
cable to the development of the UDS packet switch element and, therefore,
have been used. Packet switch performance requirements are specified for
the following characteristics:

o Quality of service
o End-to-end delivery delay
o Probability of misdelivery
o Backtone delivery delay
o Error rate
o Transmission rates.

Traffic projections for the UDS packet switching element are primarily
based on the Defense Communi~ations Agency specification for the AUTODIN II
network. These figures were projected to the 1990 expected initial operation
year of the UDS. Two sets of traffic projections are provided: one reflect-
ing an optimistic ten percent per year growth rate, and the other giving a
more modest three percent per year growth. We believe that the three per-
cent per year growth is more realistic. Volume I presents the projections
in a series of figures and tables providing terminations per packet switch
node, number of interswitch channels, originating traffic per node, destin-
ation traffic per node, intraswitch traffic per node, and tandem traffic
per node.

2.4 CLASSMARKS

The UDS is required to maintain user related classmarks to permit identi-
fication of processing features unique to a particular user line. The
recommended approach is to handle classmarks by software whereby application
program routines are called upon based on call requests made from or to the
user line. It is recommended that CPOS be capable of accommodating 100
unique class-of-service requests to fulfill the requirements given in the
proposed military standard, MIL-STD-188-141. The class-of-service marks in-
cluded in Volume I are as follows:

a. Maximum level of precedence
b. Progressive conference privilege
c. Preprogrammed conference privilege
d. Broadcast conference privilege
e. Call restricted to preprogrammed conference
f. Subscriber instrument classification
g. Trunk signalling classification

2-3

 , -L. : * •••-• ' • - '•*•

h. Restrictions on subscriber dialing access
i. Direct access service
j. Less essential subscribers for traffic load control
k. Automatic line group hunting
1. Call transfer privilege
m. Secure call privilege
n. Security level
o. Data service
p. Data equipment type.

2.5 CLASS II USER REQUIREMENTS

The Class II Users are defined as the operating personnel located at
the switching center and can be further divided into two categories: switch
supervisors, and switch attendants. Switch supervisory personnel have
general control over switching center hardware and software and operate from a
switch supervisor's console. Interface with the software, for most applica-
tions, is through the use of a structured command language which simplifies
the supervisor's interface and protects the software from inadvertent modi-
fication. The switch supervisor functions discussed in Volume I include two
activities: management functions and maintenance functions.

The switch attendant's interface with the processor system is much more
limited. The attendant's functions are similar to those in a commercial
network and include call extension, call monitoring, and directory assist-
ance.

The Class II User functions requiring CPOS control are described in
Volume I.

2.6 CLASS III USER REQUIREMENTS

Class III Users are defined as the network managers and are responsible
for overall control, maintenance and management of the network. They per-
form their duties at a few designated locations remote from the switching
center sites. A significant requirement on the operating system is the
ability of the Class III User to remotely load, modify, or delete software
in the switching center's Central Computing Complex (CCC). In addition,
the CCC is responsible for generating various types of maintenance, fault,
and status reports for transmission to the Class III User site. The DCS
recommended packet format for network control messages is assumed. This
format is compatible with that for the Tactical Communication Control
Facility (TCCF).

2-4

•--—— MtttMtMaMMM itrnfi i

• I •" > 11 II .11 ' •— ——

2.7 TECHNICAL CONTROL

The statement of work defines technical control broadly to include both
transmission and switching center monitoring and fault reporting. The CPS
design includes two units which specifically are involved in CPS software
and hardware monitoring. These units, the System Monitor Unit (SMU) and
Performance Monitoring Unit (PMU), are described to determine their relation-
ship to the operating system. A description of technical control applica-
tion software is provided to determine its impact on CPOS. The modules
included are:

a. Technical control executive
b. Analog parameter monitor
c. Analog parameter processing
d. Error rate monitor
e. Order wire communication handler
f. Fault isolation
g. Report generation.

The sizing of the modules and the load on the processor system is based
on prior work done for RADC.

2.8 UDS APPLICATION SOFTWARE REQUIREMENTS

An important consideration in the design of CPOS is the requirements
imposed by the applications software. A large scale switch, in particular,
generates unique real-time demands on the design of the operating system.
Greater emphasis is placed on the control and security features in compari-
son to the ability to do number manipulations. The system must have fast
and efficient input/output and interrupt capabilities and must be able to
manipulate tables effectively.

It was necessary to define the functional characteristics of the
UDS application software before attempting to specify the design of CPOS.
This was done in a series of functional module data sheets for each of the
major UDS elements: circuit switching, packet switching, store-and-forward
message switching, Class II switch supervisor support, Class II switch
attendant support, and Class III network manager support. Each data sheet
is structured to provide the following information:

a. A title for the module
b. A brief description of the function
c. The inputs to the module and the objects used by it
d. The causes for initiating the module
e. The frequency of use
f. The protection requirements of the module
g. Considerations applicable to CPOS design.

2-5

• —"• '• -•»-- ••

-•w-

2.9 TRAFFIC MODEL

In order to have an idea of the size of the switching system envisioned
by the UDS study, it was decided to create a model of a switch node. This
model calculates the amount of shared central equipment required from the
performance requirements which are specified for the switch in other sections
of Volume I. The model was designed for and runs on the Honeywell 6180
MULTICS System at RADC. The computer model is described in Volume I and
the results obtained are presented there.

I

2-6

 <u- riMttfc

3.0 SOFTWARE RELIABILITY

Task 2 of the CPOS effort was devoted to an investigation of software
reliability with the goal of incorporating new and improved reliability
techniques to reduce errors in the operating system. We were convinced
early in the study that the use of conventional software generation tech-
niques will not produce highly reliable software for the UDS and, therefore,
evaluated new design, production, and testing procedures to reduce failures
in the operational system. It is interesting to note, as shown in Figure
3-1, that the single largest component of software costs results from soft-
ware maintenance. This is another way of saying that more money is spent
fixing errors in the software after its initial release than in any phase
of development.

3.1 ERROR ANALYSIS

The preparation of reliable software depends on an understanding of the
type of errors that occur and their causes. Fault analysis has been used
successfully for a number of years to help increase the reliability of the
design and manufacturing process as it relates to hardware. A failure mode
and effects analysis is usually useful in determining the predominant cause
of hardware failures, but less well adapted to finding software errors.
Typically, this technique will pinpoint design and manufacturing problems
such as a weak power supply, a marginal integrated circuit, poor solder
joints, and errors in the assembly process.

Software errors, on the other hand, are more subtle since they are
generally less systematic than hardware errors. This results from the fact
that programming does not lend itself to automation and, instead, is subject
to the individual skills and thought processes of the programmer. Neverthe-
less, some attempts have been made to determine the systematic causes of
software errors.

Two attempts at classifying software faults and their causes based on
actual programs are reported in Volume II. In particular, one study reports
on an error analysis relating to the development of the IBM operating system
DOS/VS (Release 28).

The study performed indicates that software errors remaining in the
overall program after each programmer has completed and tested his module or
modules is a problem of sufficient magnitude to warrant the use of a system-
wide organized design procedure. Figure 3-1 indicates that approximately
three-quarters of the software costs are attributable to the testing and
maintenance phases of the software life cycle.

3-1

MttMfcMfti

Figure 3-1. Software Cost Allocati on

3-2

*m*mm*±.. „ illMlMMI^a

The main source of errors results from the more thought intensive parts
of the software development process. In addition, the design, preparation,
and maintenance of operating systems are more subject to errors since they
exhibit a high degree of interprocess communication, serve many users, and
have a relatively long life span.

Experience with previous Air Force and commercial large scale computer
systems indicates that current software development processes cannot be ex-
pected to be error-free and, to the contrary, result in costly debugging
throughout the life of the program. Most of these programs have been pre-
pared on a conventional decentralized basis where programmers have been
assigned responsibility for specific program parts or modules. The highest
percentage of errors observed are the most insidious in that they relate to
the interface of one module with another, improper communication with ex-
ternal devices, or incomplete or incorrect specification of the problem.

These factors lead Plessy to the conclusion that the use of an organized
design technique such as top down design, structured programming and a
program support library are necessary for the preparation of reliable soft-
ware for the CPOS.

3.2 SOFTWARE RELIABILITY MODELS

In order to specify, monitor, and validate the reliability of complex
software such as CPOS, it is necessary to develop suitable measures of soft-
ware reliability and to find methods of relating these measures to objective
test observations. This goal is best approached through software reliability
modeling, a subject that has received a considerable amount of attention over
the last five years.

In contrast to the case for software, the technology of hardware reli-
ability is highly advanced and offers both a substantial array of mathemati-
cal tools and extensive empirical test data on component and subsystem fail-
ure rates. The subject of software reliability is far less advanced. Math-
ematical approaches to the analysis of software reliability are comparatively
undeveloped, and sources of data to support theoretical modeling in this
area are meager. Nevertheless, rapid progress is being made in this field
and Task 2 undertook an exploration of methodologies which may be of use in
the development of CPOS.

Of the various parameters descriptive of the reliability of a program,
one of the most important is the number of errors that remain. Since in most
practical cases it is impossible to demonstrate that a program is completely
error free, it is necessary to accept probabilistic estimates for the number

3-3

••• I"

of errors remaining, and to use these as guides in determining when to stop
testing. Two other related factors of concern are the mean-time-to-failure
MTTF), and the probability that the program will run for a stated time before
a failure occurs. Methods of estimating all of the above parameters are
useful in the development process and various models and approaches to form-
ing these estimates are discussed in Volume II.

Plessey concludes in Volume II that the state of the art of software relia-
bility modeling is not sufficiently advanced that any single approach can
be applied with confidence. There are, however, several approaches which at
modest cost can be used to provide the guidance necessary for many manage-
ment decisions. It is recommended that more than one of the approaches
described in the previous pages be applied simultaneously. Reasonable agree-
ment of the results obtained by alternative methods adds confidence to the
values derived by a single model, while substantial disagreement warns one
that the results are not reliable and that the reasons behind the discrepan-
cies should be investigated. In many cases this investigation will point to
programming problems which may exist and suggest methods of increasing effi-
ciency. The collection and organization of the data required to exercise
these models serves to focus attention on critical areas of software testing
and establishes a base of information for use in future exercises.

It is recommended that the project team selected for the development of
the CPOS code be tasked with the responsibility of maintaining detailed logs
of the errors encountered during system debugging. The log should as a min-
imum contain the following information:

(a) Time and date of detecting the error

(b) A brief description of the observed effect of the error

(c) An indication of whether the effect is minor or severe

(d) The number of testing man-hours expended and the testing time
elapsed between successive error detections.

(e) The disposition of each error, and the programming time ex-
pended in the repair of each error.

The data in this log can then be used with one or more of the types of
models described in this section to guide management decisions relative to:

(a) The time and manpower resources that will be needed to
complete debugging.

(b) The timing appropriate to the release of code to further
levels of testing, or to operational use.

(c) The final acceptance of the software product.

3-4

1

Plesseys opinion is that the state of the art of software reliability
models is not sufficiently advanced to form the basis for formal accept-
ance criteria. These models do, however, provide useful management tools
and their use by both the programming team and the system managers, as an
adjunct to other management methods, is strongly recommended.

3.3 STRUCTURED PROGRAMMING

The use of structured programming is recommended as a good technique
to increase program reliability. It is necessary, however, to mitigate some
structured programming precepts in order to satisfy other Air Force require-
ments for a communications oriented higher order language. The Higher Order
Language Investigation has studied this problem and, as a result of the anal-
analysis, has recommended a communications extended version of the JOVIAL
J73/I language called J73/C.

The JOVIAL J73/C language does not directly support all recommended
structured programming constructs. It does, however, support the basic se-
quence, IFTHENELSE and DOWHILE constructs and the INCLUDE construct by means
of the '.COPY directive.

The structured programming CASE construct can be simulated using the
JOVIAL SWITCH statement. The mechanism for accomplishing this is rather
simple, the insertion of a comma after each internal controlled statement.
However, the procedure is subject to programmer error. The inadvertent omis-
sion of the comma at the statement end will result in executable but incorrect
code. The elimination of this hazard can be accomplished by compiler modifi-
cation or by manual code review. The former approach is superior and, there-
fore, recommended.

Also, the capability in J73 of having multiple statements per line is
not recommended. This feature violates the desirable indentation rules of
structured programming and, as a result, obscures the code presentation.
This problem can also be eliminated by a compiler modification or programmer
directive. As in the case above, the former approach is recommended.

The use of a Program Support Library is generally considered a compo-
nent part of the Top Down Structured Programming approach. We believe that
this is a sufficiently desirable adjunct to good programming practice to make
the technique worthwhile even if the precepts of Top Down Structured Program-
ming are not strictly followed.

Lastly, the decision to use a precompiler to support the preparation
of CPOS must depend on the computer selected for the processor system and the

3-5

i niirfi

' -

higher order language chosen. Basically, the decision must rest on the
availability of a suitable compiler which operates on the selected machine.

The Higher Order Language Investigation, a companion study to the
CPOS effort, recommends the use of a modified version of the JOVIAL J73 dia-
lect called J73/C. The language modification enhances the language's capa-
bility as a communications programming language and is deemed by the HOL
investigation contractor to be the language most appropriate for Unified
Digital Switch software development.

3.4 LANGUAGE DESIGN FOR RELIABLE SOFTWARE

The characteristics of the design of a higher order language selected
for the UDS software must be a compromise. It is recommended that it be an
existing language and have as many of the features found desirable in Volume
II as possible. Most importantly, it should provide for abstract data types,
enforcement of vertical modularity, and for strong type checking. The lan-
guage should enforce the disciplines of structured programming on the user.

3.5 MICROCODE

Microprogramming is a concept which, if properly implemented, can in-
crease the reliability of the UDS. The biggest increase in reliability
comes from simplifying all of the software above the microcode. This soft-
ware simplification is due to the extension of the instruction set to fit
the specific needs of packet, message and circuit switching, and to the more
hospitable environment created by this extension. The major reliability
advantage results from simpler software which is easier to test, verify and
prove.

3-6

 *••-•• •••• - . • ii - •• • „„» , „ i _^

—

Before the UDS can safely use microprogramming, it is necessary that
more higher level languages be written for microprogram generation. The
appropriate language must be oriented toward simplifying the proving of the
microprogram as well as toward generating efficient microcode. Plessey
believes, however, that such languages can be developed within the time frame
required for the UDS.

The use of dynamic writable control store adds a new dimension to the
question of microprogramming. However, because of the low level of micro-
programming languages and because of the relative stability of the program
mix in the operating environment, writable control store does not appear to
offer any substantial benefits to the UDS. As a program development tool,
it will prove extremely advantageous during microcode development and test-
ing. Its use in the operating environment, however, may complicate the prob-
lems of security and integrity. Therefore, we must recommend against the
use of writable microcode in the operational system at the present time.

Microprogramming also offers other substantial benefits to the UDS.
The tailored instruction set of a microprogrammed processor will provide
greater system throughput than a standard processor of the same instruction
cycle time and using the same algorithm. The ability to add self-test in-
structions to the processor simplifies the system recovery process and speeds
the repair of a failed processor.

Plessey concluded, therefore, that microprogrammability using read-only con-
trol store should be included in the UDS processors, and that efforts should
be made towards the development of a suitable high-level language for its
support. In addition, suitable development, test, and validation tools for
microcode should be developed, simultaneously, so that they will all be
available when required.

3.6 FAULT TOLERANT PROGRAMMING TECHNIQUES

Since the state of the art in programming validation is such that one
can still expect errors to exist in tested software, it becomes desirable to
consider building a system which will be tolerant of these errors. It has
long been recognized that hardware error tolerance can be achieved through
redundancy. The fault tolerant programming techniques discussed in Volume II
apply the same idea to software, that is, the software modules are provided
redundantly.

The primary method of software redundancy discussed involves single
execution until the detection of a failure and the substitution of a redun-
dant module. Essentially, this technique provides for the execution of a

3-7

.Uli.

•m »••••• •••

program module followed by a specific validity test of the results obtained.
A failure of the validity test results in the substitution of the alternate
module. Plessey concluded that either hardware complexities will be
encountered in building such a system, or high overhead will result in trying
to implement some of these features in software. It appears to us that the
overhead of fault-tolerant programming is unacceptable in real-time switching
system, such as the UDS. Therefore, one must justify the complexity of a
suitable hardware system to support failure tolerance if one were to recommend
this concept.

It seems that the emphasis in the UDS is on the detection of errors, not
the correction. Most of the complexity in fault-tolerant programming stems
from the fact that it seeks not only to detect but to correct errors and
allow the system to continue functioning. With this difference in emphasis,
Plessey cannot justify the more complex schemes discussed in Volume II.
They believe that there are simpler and less complex ways of detecting
errors, if this is all that is required. Therefore, they cannot recommend
this class of techniques for general use in the UDS.

However, there is one exception where Plessey feels that this approach
may be useful. This is in the recovery and reconfiguration portion of the
executive. This is an exception for the following reasons:

1. The recovery program is generally the least well tested of
all programs in operating systems because of the difficulty
in artificially creating hardware fault conditions. This
contention is well supported by much operating system
research, which shows that error recovery programs are
ususally the least well tested.

2. The overhead will be tolerable in recovery since
no requirement for very high speed recovery.

there is

3. This program is the most critical to continued system operation.

Since the overhead is tolerable in the recovery program, a recursive
cache mechanism can be used in the reconfiguration and recovery program.
The recursive cache mechanism can be implemented in software without the
special hardware required by the failure-tolerant parallel programming
techniques and can be used in this application to ensure continuity of
service.

3.7 SMALL PROTECTION DOMAINS

Plessey concluded that the small domains theory of protection is a very
desirable technique for the enhancement of reliability in the UDS, and that

3-8

JZ A ^•••„_^ "---"-

to take full advantage of its potential, it must be imp lernen ted both at com-
pile time and at execution time. Plessey further concludes that an excellent
way of implementing it at compile time is through the use of a language which
supports abstract type extension. We also are led to the conclusion that
the most effective way of implementing execution time enforcement of small
domains protection is through the capabilities mechanism.

Plessey also concludes that a most important and desirable adjunct to a
capability system for the enhancing of security is a technique known as
rights amplification. This technique allows the direct enforcement of
abstract type extension at runtime, without software intervention, as re-
quired by other schemes. Unfortunately, unlike the basic capability scheme,
efficient implementations of this technique have not yet been demonstrated.
The authors are hopeful, however, that such an efficient implementation will
be developed in the near future.

In Volume II they recommend a design approach which enables a single
enhanced capability system to implement both the desirable small domain tech-
nique of error detection and ensuring reliability, as well as providing prov-
able military security as embodied in the ESD/MCI security kernel approach.
We believe that a capability based system is a powerful means of enhancing
the reliability of the CPOS and its application software and, coupled with
a small domain approach using a security kernel, can provide the required
security protection.

3.8 INTEGRITY

The reliability of the UDS must be maintained after it becomes opera-
tional. The Integrity section of Volume II explores the problems involved
in maintaining the system's operational integrity and availability.

One of the necessary functions of the CPOS is viability testing. This
testing must be included in the original design of the system and consists of
two components: failure detection and recovery.

A second method of increasing system integrity ir by providing redun-
dancy, an effective but expensive method. Hardware redundancy is common.
The multiprocessor configuration with dynamic load sharing offers the most
reliable and cost-effective method of maintaining system throughput. The
load of a single failed processor is shared among the remaining processors,
with some decrease in efficiency. A fault recovery system is required, how-
ever, which assures that the essential functions are performed at the expense
of background functions. Software redundancy, although appealing in Its
reliability, poses significant problems to cause one not to recommend this
approach.

3-9

. —^ ..

•»••"»"»••

The other integrity procedures addressed in Volume II deal with
methods of reconfiguring the system when a failure occurs and procedures for
providing system recovery and restart.

3-10

E^ " * , " mimHt^tm^tm^^^.

4.0 SECURITY CONSIDERATION

Task 3 of the CPOS effort was concerned with the important topic of
security for the UDS and CPS. Providing security in a computer system re-
quired to enforce multiple security levels and compartments, each of which
must be isolated from one another, is a difficult problem. A number of re-
search activities are underway which address this problem, and these have
been surveyed prior to formulating their recommendations. One of the newest
among these is the work of the Air Force ESD/MCI group.

An important constraint to the security considerations analysis is
availability of a suitable computer architecture. Architectures proposed
by various researchers are evaluated in Volume III. An analysis of the
initial Communications Processor System (CPS) architecture has been per-
formed to determine its suitability for supporting an adequate security
protection mechanism for the UDS.

report.
The Security Considerations Study is reported in Volume III of this

4.1 USER ENVIRONMENT

The personnel that interface with the Unified Digital Switch are
classified into three categories. The first category, designated Class I,
are the subscribers to the network in the traditional sense and are served
by either the circuit, packet, or store-and-forward message switching sub-
system. They derive communications services in terms of call connections
and message exchanges and, in general, are not involved in the internal
processing of the switching center.

The second category of user, designated Class II, operate and main-
tain the switching centers and provide assistance to the network subscribers.
For the purposes of the security considerations analysis, two distinct types
of Class II users must be defined since the two types differ greatly in
their interactions with the UDS software and hardware. The first type are
the personnel responsible for operating the switching center, and the second
type are those providing Class I user assistance.

The third category of useri designated Class III, are tfce network
managers responsible for day-to-day and longer term network management.
These personnel are not located at the switching center site and, instead,
perform their functions at a few designated control centers. Since they are
remote from the switching node, they must receive UDS status information and
exercise control by means of telecommunications lines connected to the
switching centers.

4-1

,u. .•. i «_.__ _, _j^. " — JUX~..

"'" •• «• "•

In addition, Volume III also describes the special requirtn.onts of
the relocatable Class I user who may derive his communication services at
locations remote from his normal termination point.

Much of the guidance for the User Environment section came from the
specifications for the SATIN IV and AUTODIN II network switches since it is
concluded that the most pressing security problems arise in the packet and
store-and-forward message switching areas.

4.2 UNIFIED DIGITAL SWITCH ENVIRONMENT

The Unified Digital Switch Environment section of Volume III contains
discussions of physical and procedural security considerations in the Unified
Digital Switch (UDS). Among the topics covered are:

1) The protection of user generated classified information within
the switching center;

2) The physical protection of UDS software which acts on classified
information;

3) The isolation of Communications Processor System (CPS) equipment,
which acts on classified information;

4) Switching center personnel authorized access to classified areas;

5) Logging, journaling and alarming requirements upon detection of
a security violation;

6) The types of security violations related to Class I user service,
relocatable user service, Class II users and Class III users.

The future digital backbone system will consist of a network of modu-
lar switches that support circuit switching, store-and-forward message
switching, and packet switching subsystems in unified centers using shared
facilities. The switches will be designed to provide modular expansion of
hardware and software to promote adaptability to the traffic environment.

The projected Unified Digital Switching Center consists of a Central
Computing Complex (CCC), a switching network (i.e., matrix), and other peri-
pheral equipment required for line and trunk handling, file storage and
terminal access.

4-2

 . ^-.. —-II • i iiitninrrnnmitiiWTiiirr i —-~"^AI^^~-»...

,

>:

'; 4.3 CPS ARCHITECTURE CONSIDERATIONS
1

The CPS Architecture Considerations section of Volume III analyzes
the facilities available for implementing security mechanisms in the initial
baseline CPS architecture. The specific areas investigated include the
memory protection mechanism, the input/output structure and the interrupt
structure. The philosophy behind the design of this computer complex, how-
ever, revolves about the belief that all software utilized on the system
will have previously been proven to be correct. This is justified by its
creators on the basis that it is intended to be used in a dedicated appli-
cation, with but a single set of such programs. Therefore, they have con-
sidered only compromise due to hardware malfunction. This, we fear, may
be an overly optimistic view of the state-of-the-art of program proving.
We believe that some form of protection against both software errors and
deliberate subversion must be provided. Analysis of the architecture indi-
cates that a number of deficiencies exist if one attempts to implement any
of the current security kernel approaches to providing protection mechan-
isms. Among these deficiencies are the method of memory segmentation, the
assignment of security attributes to CPS units rather than processes, and
a slow interrupt and trap mechanism.

4.4 SECURITY KERNEL PROTECTION MECHANISM

During the last few years, a considerable amount of research activity
has been devoted to the development of security mechanisms in multiprocess-
ing/multiprogramming computer systems. Many researchers and system design-
ers currently believe that the security kernel approach offers the best
promise of achieving the demanding goals set forth for the protection of
sensitive data, including classified data in military systems. The Elec-
tronic Systems Division of the Air Force Systems Command, supported by MITRE,
has been prominent in the development of the security kernel approach for
multilevel classified communication systems. The experience of this group
has heavily influenced our study.

In 1972, a security technology panel was formed by the Electronic
Systems Division (ESD) of the Air Force Systems Command to investigate the
problem of computer security in the DoD environment. This panel proposed a
system which was based upon a reference monitor. The reference monitor is
described as: "an abstract mechanism that controls access of subjects
(active system elements) to objects (units of information) within the com-
puter system." Subjects include active elements such as users, processes,
and job streams, and objects include passive elements such as files,

4-3

(•^••••«••••••W ' " "•'*" - . -A.-•-- *•••*——— -1^>-^-^-^.—.— - ~- • - -~^>—~^M^±^*~.

programs, and peripherals. To be effective, the reference monitor must be
complete, isolated and verifiable. Completeness means that the reference
monitor must mediate every subject/object interaction. Isolation means that
the reference monitor and its data base must be protected from unauthorized
alteration. Verifiability implies that it must be small enough so that its
activities can be fully verified.

The implementation of a reference monitor in a system was referred
to as a security kernel which was considered to include the hardware and
software mechanism required for the reference monitor abstraction. More
appropriately, the security kernel is only the software mechanism when
implemented in predefined computer hardware.

The system is divided into three environments: the user environment,
the operating system environment, and the kernel environment. All software
that is required to enforce security is limited to the kernel environment.
The kernel intercedes between all subject and object interactions. With
this approach, only the kernel need be verified to certify that DoD policies
are being enforced with one exception, namely, trusted processes. Trusted
processes are those that operate outside the kernel domain, are verified to
be correct, and are not strictly monitored by the kernel as are untrusted
processes.

MITRE defines four steps that are required to build a secure system
beginning with a policy, development of a model, specification of the de-
sired system based upon the model, and, finally, implementation of the
specification. The policy in this case must be DoD policy, which contains
two types of controls: non-discretionary controls which consist of classi-
fication levels and compartments; and discretionary controls which consist
of need-to-know authorization.

There are four requirements of the model stated as follows:

o A subject shall not read an object unless:

1) The subject's level is greater than or equal to the
object's level.

2) The subject's compartments contain the object's
compartments.

o The subject shall not write an object unless:

3) The level the subject concurrently can read is less than
or equal to the object level.

4) The compartments the subject can read are a subset of the
object's compartments.

4-4

— •••-»• - - . . - .»—...~—•^.——«n.

Items 1 and 2 are referred to as the simple security condition while
Items 3 and 4 are referred to as the "*-property." The principles of the
simple security condition are illustrated in Figure 4-1 and the principles
of the "*-property are illustrated in Figure 4-2. Compartments are used as
restrictions for special user communities (e.g., R and Y communities) which
limit the transfer of information to members of the community only.

The security kernel approach and the above rules for the security
model form the basis for the security protection mechanism recommended for
the UDS.

4.5. CAPABILITIES PROTECTION MECHANISM

Capabilities based protection mechanisms are used in some computers
such as the Plessey System 250, because of the flexibility this technique
offers. Capabilities mechanisms can be characterized as systems which
assign access rights to subjects (e.g., processes) before they can communi-
cate with objects (e.g., files). This is done according to rules enforced
by the operating system.

The concept of capabilities was originally proposed by Dennis and
Van Horn of MIT. Dennis and Van Horn define a subject which they term a
computation. A computation is defined by them as a set of processes having
a common C-list, or in today's popular terminology, a common domain. Their
C-list itself consists of one or more segment capabilities. Segments were
the primary objects in the Dennis and Van Horn system. The segment capabil-
ities consist of '.nique names by which the segments can be identified and
located, as well as a set of access rights defining the permitted access of
that computation with respect to the segment referenced. These rights in-
clude EXECUTE as procedure, READ as data, EXECUTE AND READ, READ AND WRITE
as data, and EXECUTE, READ AND WRITE. In addition, every capability con-
tained an ownership indicator which indicated whether this computation owned
the capability in question or not. Computations with owned capabilities
have broad powers with respect to the object described by those capabilities.
Owned segments, for example, may be deleted by the owning computation, or
access may be granted or denied other computations by the owning computation.

This granting of access is accomplished by presenting the computa-
tion receiving the granted access with a copy of the capability. At the
owner's discretion, copies may have the same or fewer access rights than the
original. Possession of such a copy of a capability is therefore considered
proof of the owner's permission for the possessor to access the object des-
cribed by it. It is for this reason that this approach is often referred to
as a "ticket system"; possession of a capability for an object is considered

4-5

ll Ml«
• - • - '• • -' - *" * J

SUBJECT OBJECT

SECRET
Comp. A

LEGEND:

Comp. = Compartment

 = Permitted Process

-^- • Forbidden Process

TOP SECRET
Comp. A,B

SECRET
Comp. B

SECRET
Comp. A

CONFIDENT.
Comp. A

CONFIDENT.
Comp. A,B

Figure 4-1. Simple Security Condition

4-6

- --•

'•'••• •' '—" ' '•• —•^^"^•"^»•^^•»•"^^"^^

SUBJECT OBJECTS

SECRET
COMP. A,B

LEGEND:

Comp.

X

= Compartment

• Permitted Process

= Forbidden Process

TOP SECRET
COMP. A

TOP SECRET
COMP. A, B

SECRET
COMP. A

SECRET
COMP.A.B.C

CONFIDENT.
(ANY COMP.)

Figure 4-2. * - Property

4-7

————^————•"—•*-• — — —

to be an irrefutable "ticket" to use that object. This, of course, re-
quires that capabilities be unforgeable. User programs, therefore, may
not themselves create or modify capabilities; this ability is reserved to
some central trusted authority, a security kernel. This security kernel's
function, however, is limited to creation and modification of capabilities,
since an object's owner has full discretion in distributing his capabilities
for the object.

The analysis given in Volume III concludes that capabilities provide
a flexible mechanism for implementing both security and sharing policies,
but that occasionally these policies conflict with each other and prevent
us from realizing the full capability of one or the other. It is shown that
in some instances the requirements for a protection system to ensure relia-
bility conflict with a mechanism for ensuring provable military security.

As a result, Plessey has proposed an enhanced capabilities
system which implements both the desirable small domains technique of
error detection and reliability enforcement, as well as providing the
provable military security embodied in the ESD/MCI kernel. The Air Force
is not convinced that a conventional capabilities structure by itself
can be proven secure by the techniques known at present.

4.6 KEY-LOCK PROTECTION TECHNIQUES

Key-lock protection techniques can be described as mechanisms in
which each subject possesses a single key quantity and each object a single
lock quantity, which, to "fit," must have some specified relationship to
each other. The simplest relationship is that of equality, and many sys-
tems use just this scheme. However, if each subject is to have a unique
key, then it must follow from the fact that the equality function is
single-valued in both directions, that objects accessable by a given
subject are accessable only by that subject. Of course, if two subjects
share a common key, they are, for protection purposes, operating in pre-
cisely the same domain. Therefore, the major drawback to this scheme is
obvious; it can implement only an all-or-nothing sharing policy. It is
thus useful only in an environment in which it is desired to create insur-
mountable walls between subjects.

Another simple relationship is to permit access if, and only if,
K<L. This relationship allows the definition of hierarchical domains, in
which each domain may access its own objects and those of all domains below
it (those with larger K values) in the hierarchy. Such hierarchical sharing
is more flexible than the rigid wall policy discussed above, but is not
sufficiently powerful for most applications, in that it generally permits

4-8

—>———i »ii i« I

. I II» I

too much sharing. For example, such a system will support the military
security policy insofar as levels are concerned; the imposition of compart-
ments resulting from need-to-know restrictions, however, makes this approach
insufficient for the CPOS.

From the discussion in Volume III, it is apparent that the overriding
factor in a recommendation regarding key-lock techniques must be the form
and degree of sharing that must be supported. In the UDS, it appears that
while only limited sharing is needed, it will indeed be necessary for global
data objects to be accessible by most processes.

Therefore, unless a specific, multivalued function is found which conven-
iently allows the implementation of military security policy, one must con-
clude that despite its efficiency and simplicity, key-lock techniques are
not powerful enough for use by the CPOS.

4.7 SEGMENTED VIRTUAL STORAGE

Segmented virtual storage is an architectural feature of some compu-
ters which can be used as the basis for a security protection mechanism.
The more advanced implementation of secure computers use memory segmentation
to isolate and protect objects from subjects. In essence, virtual machines
are created which have hardware and software enforced barriers between
executing programs.

One of the first virtual storage mechanisms was developed in 1959
for the ATLAS computer system at Manchester University, England. The con-
cept gained wide acceptance with the development of large scale time-sharing
systems. The primary benefits of virtual storage are that programs can be
written which are not constrained by the available size of main memory and
the application programmer does not have to concern himself with memory
management problems involved in transferrals between secondary and main
memory. The virtual storage mechanism is responsible for converting the
logical address entered by the programmer into the physical address where
the data is stored.

Most major computer manufacturers have recognized the importance of
virtual storage and offer systems containing such capability. Examples of
large computers including virtual storage in their design are the Bur-
roughs B6500, the GE 645, the IBM 360 and 370 Systems, the PDP-10 and -11,
and the UNIVAC 70/46.

4-9

..i ••— i in • an n—m*immmim*im*m

Segmented virtual storage systems are useful for implementing security
protection mechanisms since they isolate the programmer from the machine.
The logical address used by the program must be translated into a physical
address by the operating system. Thus, the system must act on behalf of the
program to locate stored data and, therefore, has the inherent capability of
mediating these accesses.

A virtual storage mechanism can use segmenting, paging, or a combined
hybrid technique for dividing memory into blocks. The investigation of se-
curity kernels protection mechanisms has shown that segmented memory is
needed to support the security protection mechanism. This does not, how-
ever, preclude the use of a combined segment/page (hybrid) approach to mem-
ory organization.

4.8 ENCRYPTION OF SENSITIVE FILES

The protection of information within the UDS may be enhanced by plac-
ing the data in encrypted form prior to storage. Encryption of the data
provides an additional barrier to unauthorized browsing, and protects
against the accidental release of clear text information through malfunc-
tion or subversive action.

Sensitive information within the DCS inay be categorized as either
"user sensitive" or "network sensitive," and different protective criteria
relating to each category apply. "User sensitive" information refers to
traffic generated by the users and entrusted to the network for delivery
to the intended recipient. NSA approved procedures for the handling of
this data are mandatory, and it may be assumed that physical red/black
separation, end-to-end encryption, or other protective methods as used in
existing networks will apply also in the case of UDS. "Network sensitive"
data refers to data such as password tables, directories, and other soft-
ware that the UDS requires to perform its own mission. Regulations for
the protection of network sensitive data have not been formulated to the
extent applicable to user sensitive information; the proper safeguarding
of such material is clearly an important function of CPOS.

For both user sensitive and network sensitive data, storage in en-
crypted form can be used to provide an additional layer of protection
against tampering or unauthorized disclosure. However, since user sensi-
tive data requires stringent NSA approved procedures, any additional layers
of protection provided by CPOS in the form of encryption of internal files
will be of less significance than in the case of network sensitive data
where the additional protection represents a larger component of the overall
multi-layered protection mechanism.

4-10

The design of CPOS should, therefore, consider the inclusion of cryp-
tographic protection of sensitive data, with emphasis beiny placed on the
protection of network sensitive data. The degree of protection to be in-
cluded is properly established on the basis of engineering cost-benefit
trade-offs which may, for these applications, imply a level of crypto-
graphic protection which is considerably lower than that required under
NSA approved procedures.

4.9 MEMORY RESIDUE ELIMINATION

Memory residue refers to any "image" of information that remains in
memory after processing is completed and the memory cells become available
for the storage of new information. Protection mechanisms must be estab-
lished in the Communications Processor System to prevent the accidental
or deliberate compromise of classified information that remains in either
main memory or secondary storage as memory residue.

Plessey and RADC have concluded that simply writing over areas
subject to reuse with a null character, in the usual manner, is a sufficient
protection against compromise by the reading of "images" of classified
information remaining in these areas by subsequent owners of lower classifi-
cation. Plessey further concludes that the proper time for this "purging"
operation to take place is at the time it is deallocated. Purging at this
time allows the use of an unvalidated memory manager, as used by the CPOS
System, developed at the University of Washington.

Plessey also investigated methods which may be utilized to effect
this purging, and concluded that the use of purely software methods is not
feasible for the UDS because of the excessive amount of processor time used
and its resulting effects upon efficiency and throughput. Plessey believes
that firmware implementations are feasible, inexpensive, and relatively
efficient and probably represent the best overall choice at the present time.

However, where the volume of purging is sufficient to cause a differ-
ence in the required number of processors in the multiprocessing system,
substituting a hardware purge peripheral for a CPU, and utilizing the DMA
facility, offers the same or better performance and is more cost-effective.
Under these conditions, this hardware technique becomes the method of
choice.

Finally, bulk purging, while perhaps the easiest, fastest and most
cost-effective technique in the long term, suffers from numerous as yet
unsolved engineering problems, not the least of Which is the uncertainty of

4-11

 I . •kUMIUtMMHtfffittiMi

our knowledge of the characteristics of the memory technology which will
ultimately be employed in the UDS. Therefore, Plessey cannot recommend
reliance upon this method at the present time.

4.10 KEY DISTRIBUTION TECHNIQUES

Advanced network security techniques are under development by the
National Security Agency (NSA) which rely on key distribution procedures.
This area has been investigated by Plessey for inclusion in the UDS and to
determine the impact on CPOS.

4.11 USER IDENTIFICATION

Trustworthy procedures for identifying users, terminals, processes,
and data are an essential element in the control of access to sensitive
resources and information. The problem of providing user identification
requires consideration of human factors in addition to those technologic
factors that apply equally to the identification of machine resources.

In contrast with the policy common in the communication environment
of authenticating identification to the level of the communications lines
or facilities serviced rather than to the individual, common practice in
the computer environment does extend to the authentication of individual
identity. This is particularly the case in time sharing environments where
a variety of password methods are usually used for this purpose.

The UDS will exist in an environment which combines aspects of both
the communications and the computer environment. The relationship between
the various classes of users and the communications vs computer environ-
ments is schematically represented in Figure 4-3.

The overwhelming majority of users fall into Class 1 and, following
established communications policy, CPOS need take no responsibility for the
authentication of individual identity for these users. There are, however,
three important cases where identification to the individual (or group of
individuals) level will be required. These cases are illustrated in Fig-
ure 4-1 as those users whose activities impact on the computer side of the
UDS facility, either directly or indirectly, through the communications
side. These three cases are defined below:

4-12

"---"-

CLASS I USERS
RELOCATABLE
CLASS I USER

JLLLU

CLASS 3-
USERS

COMMUNICATIONS
SIDE

::*

COMPUTER
SIDE

CLASS 2
USERS

Figure 4-3. Relation of User Classes to
Communications/Computer Facilities.

a) Relocatable Class I Users - Users with a given set of class-
mark protected services require the capability to derive this
service from any compatible terminal, even though that ter-
minal may not have previously afforded those capabilities.

b) Class II Users - These switch supervisory personnel require
the capability to change directories, control traffic flow,
and perform limited related operations on a local basis.

c) Class III Users - These network management personnel are
responsible for overall control, maintenance and management.
They require access to all data base and program information.
In addition, many of these functions will be exercised re-
motely. These users also have the ability to downline load
programs.

4-13

in i >i
" —^--. ItU

In order to be able to provide the capabilities listed above, means
for reliable and positive identification are required. Of the three groups.
the identification needs of Class II users are least stringent since a
strong component of physical security can be effective in limiting the
acLions of these local personnel.

A number of techniques are available to perform user identification.
The discussion in Volume III classifies these methods into three categor-
ies:

a) Identification by some item of information possessed by the
user.

b) Identification by some object the user carries.

c) Identification by personal characteristics of the user.

Volume III evaluates each technique by determining the probability
of an incorrect identification and, in addition, the probability of falsely
rejecting a proper user. Although some exotic identification techniques
are available, we believe that cost and reliability considerations recom-
mend the use of the password technique described in Volume III.

The previous subsection discussed techniques for user identifica-
tion. In addition, it may be required to identify terminals independently
of users employing the terminal, especially where a terminal is employed at
a base communications center. Techniques such as BLACKER-" (see Subsection
7.1) are capable of combining the user identifier with the terminal iden-
tifier in a manner which permits the node to authenticate both.

The need to identify terminals in the UDS exclusively of users de-
pends on the mode of operation. The ability of the Class II switch super-
visor and Class III network manager to access Communications Processor
System (CPS) software and to change programs and modify files, makes it
necessary to exercise careful control over the terminals which may access
the CPS. The security audit log should provide identification of the user
as well as the terminal in this case.

An additional consideration for terminal identification exists if
key variable distribution cryptographic techniques are used. The BLACKER
system, for example, requires that the terminal to node link be secured by
use of a Terminal Unique variable prior to transmission of the call vari-
able. The Terminal Unique variable serves as a means of authenticating the
terminal prior to text transmission.

4-14

MM liMta

An important application for terminal identification in the UDS net-
work is the authentication of Class III users accessing CPS files and
changing UDS software. As discussed in Volume I, the Class III users will
be centrally located at network control facilities which are remote from
the network switching sites. This requires that the sensitive function of
"down-line" loading of software be accomplished via telecommunications lines
which are subject to electronic surveillance and tampering.

These lines will probably be encrypted to protect access to classi-
fied files in the CPS. In addition, because of the sensitive nature of
the software modification function, a method of identifying the user and
terminal is necessary to provide positive identification of the remote
source. It is good practice to keep a security log which identifies both
the user and terminal to permit the maintenance of a security audit trail
since changes to the system may be generated from multiple sources includ-
ing Class II users.

4-15

—^.^.—.., . ::•-, ,...:. _. . J

5.0 OPERATING SYSTEM SURVEY

Eight operating systems were studied in the course of the operating
system survey, Task 4. They are as follows:

HYDRA
Secure UNIX
ESD/MITRE Security Kernel
Plessey System 250 Recoverable Operating System
Ptarmigan
MULTICS
Bell 1A Processor Operating System
Pluribus

These can be classified by the
Secure UNIX and the ESD/MITRE Systems
tion's PDP-11 family of computers. Th
System and the Ptarmigan system both u
ter. The MULTICS operating system is
Pluribus is designed for Lockheed SUE
1A Processor operating system has been
control processor used by the latest c
Switching Systems (ESS), particularly

hardware architecture used. HYDRA,
use the Digital Equipment Corpora-
e System 250 Recoverable Operating
se the Plessey Processor 250 compu-
designed for Honeywell machines, and
computers used by ARPANET. The Bell
built specifically for the common
lasses of Bell System Electronic
the high density ESS No. 4.

The objective of Volume IV is to document the results of the opera-
ting system survey and to determine those features of the operating systems
which are useful to the CPOS and those which are not. It should be noted
that the operating systems surveyed were designed for applications other
than the UDS and, in some cases, for applications which did not envision
communications switching. The results and conclusions developed during
the operating system survey were used as the input to the Candidate Selec-
tion Task reported in Volume V.

5.1 HYDRA

The HYDRA operating system is a multiprocessor system designed at
Carnegie-Mellon University for the purpose of operating systems research.
It is designed to support a number of different operating systems simul-
taneously, as user programs. It runs on a unique set of hardware known as
"C.mmp." This is a combination of commercially available equipment plus
some custom-designed interfaces.

5-1

HtiH

The C.mmp computer system consists of a number of small central
processors connected to a number of memory modules by a nonblocking cross-
bar switch. All of the processors are considered as equals by the switch,
although each may offer a number of different features. The central proc-
essors used are Digital Equipment Corporation PDP-11 minicomputers.

The software of the HYDRA provides a set of mechanisms which are
employed by users for the purpose of building operating systems. This
collection of facilities acts as the kernel of these systems. To this end,
an attempt is made to separate matters of policy from the actual mechanisms
which provide the service.

Plessey has concluded that to adapt HYDRA to the UDS environment would
be a large task. The current process change overhead and access protection
overhead is much too great for a digital switching application. Much new
software would have to be written.

It is conceivable that most of the large overhead can be eliminated
by adapting HYDRA to run on a capabilities-oriented multiprocessor hard-
ware. In addition, hardware redundancy must be built into the system to
increase reliability.

The security system in HYDRA is, by design, one of the most flexible
to be found on any system. HYDRA provides a set of facilities by which the
user can create his own security policy. Within his own operating system,
the user can adopt the straight capability system provided, can override it
entirely to run a completely open system, can tighten it up by the addition
of levels and compartments, or even an access list policy. Some of these
policies require almost no addition software, but others, such as access
lists or the military-style levels and compartments, require the creation
software to establish and maintain the structures.

HYDRA is just the kernel of an operating system. For the UDS appli-
cation, an operating system must be designed and implemented on top of the
kernel. This system must be designed to provide an environment which is
especially hospitable to the real-time switching applications programs.
The applications programs would also have to be written, but they would be
simpler to write because of the benevolent operating system environment.

5.2 SECURE UNIX

The Secure UNIX is a general purpose multiuser timesharing system
designed for use on a minicomputer system. It is designed to enforce
military-style security rules on each user to protect itself and other
users from failures and from purposeful attempts to compromise the system.

5-2

 •—••• Nl I

I

The minicomputers used by the Secure UNIX operating system are Digi-
tal Equipment Corporation machines. The original (non-secure) UNIX was
created by Bell Laboratories for the PDP-7 and PDP-9 computers, and a later
version used the PDP-11/40 and PDP-11/45, which are equipped with memory
protection hardware. Versions of UNiX were also built on other members of
the PDP-11 family as well as on the Interdata 8/32. The Secure UNIX is
the newest incarnation and uses either the PDP-11/45 or the PDP-11/70.

The Secure UNIX is an operating system designed to provide verifiable
security. It is based on a security kernel which functions as the control-
ler of the security protection mechanism and contains only verified code.
To accomplish this, the size of the kernel is kept small. The overall oper-
ating system is similar to the previous PDP-11 UNIX systems, thereby making
use of extensive software developed by Bell Laboratories.

The Secure UNIX is under development at the University of California
at Los Angeles for the Advanced Research Projects Agency (ARPA). Currently,
it is partially operational and is undergoing testing at UCLA.

5.3 ESD/MITRE SECURITY KERNEL

The ESD/MITRE security kernel is the result of an experimental deve-
lopment of the Electronic Systems Division (ESD) of the Air Force and the
MITRE Corporation. The computer used for the implement is the Digital
Equipment Corporation's PDP-11/45. The security kernel based operating
system is designed to implement the DoD multi-level security provisions.
It provides a multiuser, general purpose operating environment capable of
performing a number of different applications. The system is still con-
sidered experimental and development is continuing.

The system, as it is presently constituted, presents several short-
comings for use in the UDS. One of the most severe is in the Memory Man-
agement Unit (MMU). Only eight usable segment registers are provided.
This results in a small address space. Another problem is that these regis-
ters must be loaded one at a time which slows down process changing.

Another deficiency is that only three different access rights are
available: read-execute, read-write-execute, and no access. A larger and
more flexible assortment of access rights would be desirable.

The most useful part of this system is the security protection system
since it is designed to satisfy the requirements of the military security
regulations in a provably secure manner.

5-3

aMtMMM

To use this system for the UDS would require the addition of more
processors to the system along with a major redesign of the memory man-
agement unit. The software would have to be rewritten to support a multi-
processor environment.

5.4 SYSTEM 250 RECOVERABLE OPERATING SYSTEM

The Plessey System 250 is a highly modular multiprocessing, multi-
programming real-time computer system. It is designed specifically for
the communications switching environment, where system integrity, recover-
ability and maintainability are of central importance.

The system consists of a number of processors, storage units, and in-
put/output peripheral devices, in any of a large number of possible config-
urations. To facilitate system integrity, a capability addressing scheme
is implemented directly in the hardware to minimize the damage which may
be caused by a failure. This capability addressing system involves input/
output devices and the internal processor registers, as well as the memory.

The operating system consists of a collection of connected subroutines.
Each subroutine has only the access capabilities that it needs, and never
more. A special subset of the operating system is the programmer oriented
commands of the Program Development System. It is isolated from the rest of
the operating system to preserve system integrity. Also contained in the
operating system is the recovery system which handles failures and recon-
figures the system, as required, to bring the system back on-line.

The main advantages for considering the System 250 operating system for
CPOS utilization are its use in communications switching applications and
its implementation of a capabilities security architecture. Major modifi-
cations would still be required, however, to adapt this system for our
application.

5.5 PTARMIGAN

The Ptarmigan system has been specifically designed for the secure mili-
tary switching environment. It uses a modified version of the Plessey Sys-
tem 250 outlined in the previous subsection and described in detail in Vol-
ume IV. The Ptarmigan Operating System is basically a subset of the System
250 operating system with changes to better adapt the system to the trans-
portable military switching environment. The advantages and disadvantages
are the same as those given in the previous subsection.

5-4

*

_» , ___, -• • . - -.jateMMM

_

5.6 MULTICS

MULTICS is a general purpose multiprogrammed, multiprocessor operating
system. It was originally developed as a tool for operating systems devel-
opment and related computer research, and has grown into a powerful oper-
ating system used to support interactive computer facilities. Much of the
hardware used with MULTICS was specifically designed or modified for this
purpose. The software places a heavy emphasis on ease of use for the
casual user, on system security, and the privacy of each user's files.

The current version of MULTICS is designed to run on the Honeywell
Series 60/level 68 computer. Previous versions used the Honeywell Model
645 and Model 6180 computers. Much of the security system is currently
located in the hardware.

The software is a segment oriented, virtual memory, timesharing sys-
tem. The operating system is a set of privileged segments which form the
center of a hardware-protected ring structure. The system is oriented
toward program development, particularly in the time-sharing mode where
the support of interactive terminals is essential. Batch processes and
automatically started processes, however, are also supported.

To attempt to adapt MULTICS to a digital switching environment poses
problems. Because MULTICS was designed as a program development system,
the process overhead consumes an excessive amount of time.

All of the applications package would have to be written, including
the specialized device handlers.

Although comparatively sophisticated, there are several known holes in
the MULTICS security system. In the current version, there are over three
hundred segments which operate within the most protected ring of the super-
visor, and, therefore, of the system. This results in the supervisor and
many administrative programs having far more privilege than is necessary
for their respective tasks. A failure in any overprivileged routine could
compromise the privacy of other users' data and, possibly, the integrity
of the system. The system also lacks an efficient means for checking the
correctness of the parameters passed to a subroutine of higher privilege
than the calling routine. Also lacking is a provision for two mutually
suspicious programs that are attached to a single process to be protected
from each other; that is, the access validity within a given ring belongs
to the process, not to the active segments within that process.

To adapt MULTICS to the switching environment, a new fault recovery
philosophy and implementation would have to be created. It would have to
be capable of automatically restoring the system to an operating configur-
ation quickly and with an absolute minimum of disruption.

5-5

"^

5.7 BILL 1A PROCESSOR OPERATING SYSTEM

The 1A Processor was designed explicitly for controlling a telephone
circuit switching network. It is a very fast and extremely reliable ma-
chine. The hardware is highly fault-tolerant due to redundancy of compo-
nents, including the central processing unit.

The software of the 1A Processor is designed for only three basic
functions: switch matrix control, maintenance diagnostics, and administra-
tive reporting. Heavy emphasis is given to reliability and to fault re-
covery. The software will reconfigure to exclude failed components both
quickly and automatically.

The 1A Processor is capable of being used in switching environments
where a large number of transactions per unit time is required. During
the busy-hour, it may be called on to handle up to a half-million calls.

The operating system of the 1A Processor provides facilities for input/
output, scheduling, administrative inquiry, and maintenance. These func-
tions can execute concurrently with call processing. The emphasis is on
call processing and on maintenance and fault recovery.

Adapting the 1A Processor to the (JDS environment would involve some
serious changes, even though it was designed to work in a commercial
switching environment. The UDS not only requires circuit switching, but
also message and packet switching, all with much stronger security con-
straints than are present in the 1A Processor.

Security is not a primary concern of the 1A Processor design. The
system is constructed to run in a controlled environment under the super-
vision of trained and trusted maintenance personnel. Because of this and
because the subscribers do not directly use the computer, security con-
trols in the military sense are not necessary. The environment which is
envisioned for the UDS requires much stricter security - both in the hard-
ware and in the software.

Second, since the UDS environment requires packet and message switch-
ing, the switch will use on-line storage for sensitive data. This data
must be protected and the 1A Processor lacks an adequate mechanism to do so.
A segmented memory with a protection mechanism, such as capabilities, is
required instead of simple address bounds checking, especially when the
bounds may be moved at the discretion of the programmer.

In addition, facilities are required to handle packet and message
switching which have not been envisioned in the design. This represents a
major modification.

5-6

'

J3g—'-— — . - . -—.—^^^ „.. _ ^ it MI ^ J

1

5.8 PLURIBUS

The Pluribus computer is a multi-processor computer system designed
for a digital telecommunications environment. It was designed by Bolt,
Beranek, and Newman, Incorporated for ARPANET, the pioneering packet switch-
ing network. The Pluribus throughput is 1.5 megabaud, an improvement over
the previous switch processors used at the network nodes.

The hardware consists of Lockheed built SUE processors, memories, and
input/output devices interconnected by high speed busses. The architecture
is described in Volume IV.

An operating system in the conventional sense does not exist in the
Pluribus system. As an ARPANET node, the software consists of an inter-
weaving of several applications programs. The major design goal of the
software is to maintain the system's availability. If a failure occurs,
the software attempts to isolate the failed component, remove it, and con-
tinue processing.

The ARPANET nodes are not designed to be secure in the military sense.
No control is exercised to prevent the interconnection of terminals and
computers other than those imposed by individual users. The ARPANET nodes
are designed with the assumption that the system is operating in a benign
environment. As a result, an ARPANET node is more prone to disruption by
a malicious user than would be acceptable in a UDS node since a rigid se-
curity protection system is absent from the design.

5-7

6.0 CANDIDATE SELECTION

Volume V presents the results of the Candidate Selection Study, Task 5.
The study considered the changes required to convert five operating system
candidates selected from the previous operating system survey task. A sixth
operating system, the Tandem/16 Guardian Operating System, was also included
since the architectural features are attractive for consideration for CPOS.
Unfortunately, the authors were unaware of this relatively new system at
the time the operating system survey was being performed, but it was con-
sidered important enough to include in the candidate selection. The five
candidates chosen from Task 4, in addition to the Tandem/16 system, are:

a) HYDRA
b) PLURIBUS
c) Secure UNIX
d) Security kernel for the PDP-11/45
e) System 250 Recoverable Operating System.

6.1 DESIRED OPERATING SYSTEM CHARACTERISTICS

Volume V evaluates each candidate system on the basis of the following
features: security, memory management, process management, input/output
management, interprocess communication, reliability, and human interface.
These, of course, are not mutually exclusive groupings; there can be con-
siderable overlap between several, depending upon the design of any given
system. The CPOS must contain procedures to implement each of these areas.

One of the most stringent requirements of the CPOS is imposed by the
need for multilevel security for handling classified messages. This facil-
ity is a machine implementation of the people-and-paper document classifica-
tion system consisting of several different subject groupings, each contain-
ing several levels of sensitivity. These subject groupings are known as
"compartments." One compartment could be NATO, another Bioweapons, Nuclear,
USSR, and so forth. The classified levels applicable are the standard DoD
security levels: unclassified, confidential, secret, and top secret. These
are ordered by successive restriction: if a person has clearance to access
secret material, then related unclassified and confidential material is also
accessible, but material classified as top secret or above is not.

In the area of process management, it is clear that UDS applications
processes can be divided into at least two classes. These are operations
control processes and non-operations control processes. This latter classi-
fication includes management reports, directory assistance and the like.

6-1

*• -••- iri-M HI ii n 1

 ,—

The operations control processes must take precedence over this second
group. Each of these groups can be subdivided repeatedly by various cri-
teria to form a priority list of tasks required by the priority scheduler.

Some sort of memory management algorithm will be required. It is
highly improbable that the entire UDS application software and the CPOS
can be contained in main memory in a static fashion. Even if this were
possible, some memory management would be required for allocating data
space. It is apparent that several different types of memory allocation
will be required for the UDS application software. A memory-resident
allocation will be required for the commonly utilized operations control
programs and for the data tables which will be accessed by these programs.
For non-operations programs and for diagnostics, a secondary storage-
resident allocation is more practical. For call registers, message buffers,
and other data structures, still another type of allocation will be re-
quired. Much of the information utilized by the application software for
routing and security will be of a tabular form. This is most easily dealt
with in the form of data bases.

Input/output management is intricately mixed with the security struc-
ture. Some devices will have a fixed security level; others, especially
remote devices, may have a changeable security level, depending upon the
person using it. Assigning devices to processes must also be considered;
care must be taken to prevent processes from halting because of conflicts
for resources.

Then there is the question of what types of input/output devices must
be supported by the CPOS. Certain ones are obvious: a console terminal,
disk drives or other form of secondary storage, and some type of magnetic
tape drive. For operations, the CPOS must support control of a circuit
switching matrix, devices for sending and receiving data packets, and per-
haps remote keyboard terminals and data encryption hardware.

Since the UDS will include a store-and-forward message switching capa-
bility, some secondary storage space will be required for material which
cannot be delivered immediately. This requires a file system. The secur-
ity structure will probably require that different security levels, and
perhaps even different security compartments, be stored upon physically
distinct media. A separate secondary storage device for each security
level will probably be sufficient. However, it is possible that some mess-
ages will contain several parts, each with a separate level of classifica-
tion. The file system must successfully deal with this. The best approach
appears to be a multilevel tree structure, with a separate major branch for
each security level and each security level branching into a number of
security compartments.

6-2

- .»

*

1
In any multiprocessing computer system, some means of communicating

between processes is a requirement. The crudest methods utilize shared
files or common tables. More sophisticated techniques resemble standard
input/output to the applications programmer. In a multicomputer, such as
is envisioned for the UDS, data may frequently have to be transferred be-
tween processes executing on separate processors. A strong and sophisti-
cated interprocess communication system can provide implicit solutions to
data locking and processor synchronization problems. For example, if a
single process is given the task of providing all services involving a
given data base, the problems of reading partially updated data, unlocking
locked records, and invalid access, all have simple solutions because all
requests for data base service are given to the one "gateway" process.

Another basic requirement of the CPOS is reliability. Reliability not
only includes correctness of code, but availability. When a failure occurs,
either in the hardware or the software, the system must handle the error in
a manner which allows the system to function and remain available. It can-
not be allowed to breach security, in any case. To provide this reliabil-
ity requires several things: fault detection, automatic system recovery,
and fault diagnosis.

Fault detection is not only a hardware function, but also includes
software. The classical fault is a device failure indication reported
in a hardware status register. These include memory parity, I/O device
error, and illegal instruction. The software must detect faults such as
garbled data in a table, parameters out of range, or array index out of
bounds. Seme faults can be detected by the appearance of an exceptional
condition; others must be ferreted out by special tests.

Once the fault has been detected, the CPOS must recover from the error
and continue processing. This recovery must be quick and automatic. In
some cases, fault correction may simply consist of retrying the operation
that failed. In more severe cases, major parts of the system may have to
be excluded from the system for diagnosis and repair in the case of the
hardware, or for modification in the case of software. How this process
commences is determined by the structure of the hardware: a multiprocessor
offers the system designer many more options than a prime-and-standby sys-
tem. This translates into more flexibility, especially in regard to re-
covery speeds: many faults will only disrupt one or two processors of a
multiprocessor while the remainder of the system continues normal opera-
tions.

Once the fault has been detected and the system has recovered, time
must be taken to determine the cause of the fault. This requires that the
CPOS be capable of running diagnostic tests concurrently with normal oper-
ations. Diagnostic tests can be divided into two groups: fault detection

6-3

• IM —

and fault isolation. There will be hardware components in the CPOS whose
sole function is to detect faults. Some fault detection diagnostics must
be scheduled to test CPS mechanisms on a periodic basis to detect "quiet"
failures. The remainder can be scheduled on demand, either as a result of
a detected failure, or as the result of a request from the operations per-
sonnel .

6.2 SECURE UNIX

The use of the Secure UNIX as a basis for the CPOS has several advan-
tages, but also some disadvantages. The main advantage is that applications
programs can be written and tested on any standard UNIX system in a higher
level language and then ported to the CPOS. This allows the parallel de-
velopment and implementation of the CPOS and the application programs.

The disadvantages of the Secure UNIX are substantial. The only re-
semblance which a CPOS UNIX would have to the Secure UNIX is the basic
multikernel structure and the standard UNIX virtual machine seen by the
application routines. The security kernel has to be redesigned in order
to implement the levels and compar tinents security structure and to allow
for multiprocessing. The file system kernel and the initiator will also
require substantial redesign. A system recovery strategy, which cannot
breach security itself or allow the recovered system to breach security,
must be designed and implemented.

From an operations point of view, a CPOS UNIX would probably suffer
from extensive process change overhead due to the large number of small
domains. This may prove to be detrimental to the performance of the system.

6.3 SECURITY KERNEL FOR THE PDP-11/45

The ESD/MITRE security kernel is a monolithic structure designed for
a single processor machine. Most of the problems which would be encountered
in the implementation of this system are due to the architectural differences
between the PDP-11/45 and the, as yet to be determined, CPS machine.

The major advantage of this system is the security structure which is
already designed into the system and which conforms almost specifically to
the needs of the CPOS environment.

What may prove to be the major disadvantage is the requirement to
certify a relatively large quantity of code for trusted processes which do

6-4

 : L.

not conform to the security rules. At the current state of the art, it is
unlikely that so large a quantity of code can be rigorously proven.

The ESD/MITRE Security Kernel is designed to be an experimental
demonstration system. Because of this, operational concerns such as effi-
ciency and speed are of secondary importance. It is, therefore, very
likely that a good number of the algorithms used in the design of the
Security Kernel will have to be redesigned before they can be utilized in
the CPOS.

6.4 SYSTEM 250 RECOVERABLE OPERATING SYSTEM

The advantages of the Plessey System 250 are that it is not only a
multiprocessor system, but that it is also known to work. This system has
seen extensive field experience, and was designed for use in communications
switching. It already has most of the features required for the CPOS
built into it, including the fault recovery system.

The biggest disadvantage of the System 250 is that it requires modi-
fication to the capabilities mechanism to provide the required security
protection mechanism. To add the security structure requires significant
redesign of all interprocess communication and all input/output. This also
affects the fault recovery strategy, in order to prevent breaches in secur-
ity during the recovery process.

6.5 PLURIBUS

The advantage in using the Pluribus design for CPOS is that it al-
ready performs one of the major tasks of the UDS, namely, packet switching.
It is also a multiprocessor system and, as a result, contains the system
software needed for controlling multiple processors and providing resource
allocation among processors. The fault recovery system is also well de-
veloped.

The disadvantages of using the Pluribus software as the CPOS are,
however, serious. Primarily, the security protection structure is not
adequate for the UDS since no separation is provided between the oper-
ating system and the application code, and there is no security policy
enforcement. Among its other disadvantages are its lack of higher level
languages and its lack of a file storage facility. These shortcomings for
the CPOS application require substantial redesign.

6-5

J

6.6 HYDRA

An advantage of HYDRA for use as the basis of CPOS is that it sup-
ports a flexible multiprocessing structure. The interlocks and other prob-
lems associated with multiprocessing and parallel processing have, for the
most part, already been solved. The use of a capability protection struc-
ture simplifies the problems of maintaining system security. Most impor-
tantly, HYDRA has been written in a higher level language and is exten-
sively documented; making the porting of this system to a more suitable
hardware environment comparatively easy.

On the disadvantage side, the lack of the required security struc-
ture and file structure loom as major problems. HYDRA was designed to be
the kernel of a number of different operating systems simultaneously, not
to be an operating system in and of itself. Because of this, most of the
other features required by the CPOS, including the command language and the
fault detection and fault recovery system, must be written.

6.7 TANDEM/16 GUARDIAN OPERATING SYSTEM

One of the newer commercially available computer systems is the Tan-
dem/16. This system, designed and developed by Tandem Computers, Incorpor-
ated, utilizes a unique combination of hardware and software to produce a
high speed, reliable, and flexible multicomputer. It is used for trans-
action processing in applications where system reliability is of primary
importance.

The processor has .Uck of oriented architecture and utilizes a
sixteen bit word length. It ,s totally microprogrammed, with the instruc-
tion set tailored specifically for the operating environment. A processor
is capable of addressing four stacks containing a maximum of sixty-four
thousand words each. Two of these stacks are the code stack and data stack
of the operating system. The remainder are the code stack and data stack
of the user processes. The code stacks cannot be modified. The input/
output devices are all two-port devices; these ports are normally con-
nected to separate processors.

The Guardian operating system forms the heart of the Tandem/16 com-
puter system and is designed to provide a reliable fail-soft environment
with automatic fault recovery. In this, it appears to succeed admirably,
and, in the process, provides workable solutions to the difficult problems
associated with multiprocessing. Guardian is a flexible, general purpose
multicomputer operating system which provides for both program development
and specific applications.

6-6

"• • i i MI • i m • i .^f^—fiatM^

r
A disadvantage of this system is the lack of a multilevel security

protection mechanism adequate to meet UDS requirements.

It is the opinion of the authors that this security can be provided
by redesigning the interprocess communication facility of Guardian. Dif-
ferent levels of security can be stored on physically separate storage
devices, each of which is driven by a separate, but identical, driving
process.

The major advantage of the Tandem/16 computer system is that it
already provides working solutions for two of the most difficult problems
of the CPOS task: support of a real-time multiprocessor environment and
automatic fault recovery. An additional advantage is that the Tandem/16
is designed for on-line transaction processing, a task which is similar to
that of the CPOS.

6.8 CONCLUSIONS

Of the operating systems examined during the course of this study,
none is directly suitable for use as the CPOS. In fact, not one can be
made suitable without extensive redesign and modification.

Of the features considered desirable in the CPOS, some are far
easier to design into an operating system than are others. The easiest to
provide are driver programs for various peripheral devices. The two most
difficult are the multilevel security feature and the interprocessor com-
munication in a multiprocessor computer architecture. The CPOS must pro-
vide both of these features.

Including either of these features in an operating system are diffi-
cult problems. Many attempts have been made to write viable multi-
processor systems, and some work only marginally. A few attempts have
been made to implement multilevel security in an operating system and
none have been demonstrated in an operational communication switching
environment.

Because the difficult problem of multiprocessor interconnection
is a solved problem for a limited number of operating systems, the authors
recommend one of these candidates be used as a base for designing the CPOS.
With this selection, the biggest design task remaining is to add multi-
level security. If one of the experimental secure systems is selected as
the model for the CPOS, there is a risk that the design will be unworkable
in the UDS switching application.

6-7

.. —.A

——•

The Tandem/16 operating system, Guardian, has desirable reliability
and multiprocessor handling features, but lacks a multilevel security
structure. This deficiency is serious, and requires significant modifica-
tion to the existing commercial version of Guardian. The user interface
does provide, however, almost all of the features which the CPOS will be
required to provide, and does so in the most consistent and logical form
of all of the operating systems studied.

Since the Guardian operating system serves a multiprocessor computer
architecture and since it incorporates required reliability features for a
real-time transaction oriented computer system, we believe that this oper-
ating system can serve as a design model for the CPOS.

6-8

L ,...a>«»,~—,..—.•* •<!»

7.0 IMPLEMENTATION METHODS

Volume VI of the final report provides the results of the Implement-
ation Methods Study, Task 6. The objective of this study was the defining
of an approach for producing the CPOS which satisfies the requirements for
reliability and security as determined under Task 2 and Task 3, respec-
tively. The major subject areas discussed in Volume VI are:

a. DoD standards and guidelines
b. Program management
c. Program design
d. Design aids for implementation
e. Programming
f. Formal design methodology.

7.1 DOD STANDARDS AND GUIDELINES

The applicable DoD standards are briefly described in Volume VI and
the sections of the standards which are most applicable to the CPOS imple-
mentation are noted. Some of these standards are general in nature and are
not affected by the specific program development techniques which are rec-
ommended for the CPOS. Other standards require some modifications, par-
ticularly with respect to their requirements for conventional flowcharts as
documentation for software systems. Where appropriate, recommended
revision is stated.

The standards reviewed are as follows:

a. MIL-STD-490, Specification Practices
b. MIL-STD-483, Configuration Management Practices for Systems,

Equipment, Munitions, and Computer Programs
c. MIL-STD-187, Switching Planning Standards for the Defense

Communications System
d. DoD 4120.17M, Automated Data Documentation Standards Manual
e. DoD 5000.31, Interim List of DoD Approved HOLs
f. DoD 5200.28M, ADP Security Manual.

Ptessey recommends that the standards discussed in Volume VI,
appropriately annotated, be used for the CPOS implementation. It may
also be appropriate that new standards be developed to cover the use of
new and evolving software development technologies such as top-down and
structured programming. The RADC Structured Programming Series is a good
starting point for the development of these standards.

7-1

-* —»• —.——. L-^.-- ••. • • • —m.H,^_ A

7.2 PROGRAM MANAGEMENT

The discussion of program management techni^jes provided in Volume
VI is divided into two parts, one discussing the management organization
for a software project, and the second discussing program control methods.

The main management organization methods reviewed in Volume VI are
the chief programmer team and egoless programming, and variations of these
techniques which go by the names of Strong Leader, Strong Leader plus Board
of Directors, Inspector General, Councils and Working Group, and Project-
Oriented Blind.

The program control methods reviewed are the familiar Critical Path
Methods (CPM), of which Program Evaluation and Review Technique (PERT) is
the most popular, design and coding reviews, and software audit and review.

While we recommend the use of a systematic program management metho-
dology such as those discussed in Volume VI, we believe that any particu-
lar management procedure may work well in one organization and fail in an-
other. Success or failure could be due to the diversity of skills of the
members of the task, the underutilization or overburdening of the task
managers, the size of the project and its expected duration, and a partic-
ular company's experience and commitment. For these reasons, we do not
recommend that the Government make any management organization approach a
contractual requirement for the generation or implementation of CPOS.
With respect to program control methods, it is recommended that the insti-
tution of some form of critical path method such as PERT be a requirement
for any major software development. Various design reviews and system
audits of the types described in this section should also be encouraged
but not be mandatory.

7.3 PROGRAM DESIGN

The program design phase of the implementation process is vitally
important to the assurance of reliable and cost effective software. Al-
though software development techniques are in their infancy, certain
methods have worked successfully for the development of programs of simi-
lar size and complexity to CPOS. The foremost among these methods is the
use of modular design.

It has been generally accepted by software designers, that dividing
a program into a number of self-contained modules is superior to large in-
tegrated complex programs from the viewpoint of reliability, readability

7-2

—""* ~" •'*• '————"-—— -ttrwiMinn rim ••*•

and maintainability. The reasons for this become evident to anyone
attempting to review a program prepared by someone else. The methods for
good module construction, however, are, at best, inexact.

What is required are criteria for judging good module design, from
both the characteristics of the module's internal construction and from its
interface with the other modules comprising the overall program. Internal
construction is discussed in Volume VI under the subject heading "Module
Strength," while the interface criteria are discussed under the heading
"Module Coupling." Also, included is a systematic procedure for dividing
a program into modules, called "Composite Analysis." This decomposition
of the program is presented in a step-by-step manner.

A successfully employed design methodology which has been used with
modular programs is Top-Down design. This technique imposes a design and
implementation procedure which requires an orderly progression from the
more general to the more specific, in an organized hierarchy of stages.
The concept of top-down design is also discussed in the program design
section of Volume VI.

The program design section includes the Levels of Abstraction design
method first introduced by Dijkstra. A desiqn structure for CPOS is deve-
loped based on a concept outlined by Shankar and Chandersekaran and the
software approaches recommended in Volume I on Requirements, Volume II on
Reliability, and Volume III on Security.

7.3.1 Modular Design

The concept of dividing a complex system into simpler modules is
useful for the CPOS implementation, since it leads to software that is more
reliable and easier to maintain. The basic problem with the modular design
approach, however, is that too many small modules can cause processing in-
efficiency.

Using the guidelines of module strength and coupling given in Volume
VI can result in a large number of small modules if improperly applied.
Although small modules are desirable from the viewpoint of reliability
since they are clearly defined, they pose an efficiency problem because of
the interconnection complexity.

In general, the interconnection and passing of parameters and data
between modules requires greater overhead than when the same operations
are performed within a module. The CPOS will operate in a real-time
environment; consequently, consideration must be given to minimizing

7-3

- •••

processing overhead by trading between the greater reliability of smaller
modules and the increased efficiency of larger modules.

The problem still remaining is how to design larger modules without
seriously degrading reliability. Based upon our analysis an effective way
to form larger multifunction modules is as follows:

1) Decompose the CPOS into elementary functions that exhibit
high module strength and low module coupling.

2) Identify high-usage of functions.

3) Group related high-usage functions together to form modules.

Decomposing a complex system into larger modules containing related
functions results in a slight problem for software maintenance. Namely, if
a single function within a module requires replacement, the entire module
must be dealt with. This is not a serious problem, because the structure
of a module is less complex than the overall program and the number of
lines of code affected is limited.

Another efficiency consideration which results from module size has
to do with the security protection mechanism. Volume III, dealing with the
Security Considerations Study explains the security benefits to be derived
from computer architectures using segmented memory. In this case, variable
length named data and instruction blocks are stored and protected under the
control of the security protection mechanism. The easiest and generally
best procedure to follow is to treat modules as system segments.

Establishing a one-to-one correspondence between modules and seg-
ments, however, can lead to efficiency problems. The use of many small
modules increases the complexity of segment "bookkeeping" structures such
as access control lists and various capability tables. Modules that are
too large have the potential of causing security problems in that the pro-
tection system is not sufficiently fine-grained to provide adequate flex-
ibility.

From the above discussion one sees that the job of dividing a pro-
gram into modules is not straightforward. The program designer must bal-
ance the often contradictory criteria of efficiency, reliability and secur-
ity. Also, the most desirable method of assigning functions to modules is
sometimes not obvious.

Software designers have attempted to provide qualitative guidelines
for judging the "goodness" of modules by giving criteria for determining

7-4

—• -"- —-* J-

•*•*

.. .-

module cohesiveness and coupling. These criteria, discussed under the
topics of Module Strength and Module Coupling in Volume VI, do not, however,
provide a methodology for generating good modules but, rather, a non-exact
way of judging quality after the module has been generated. Composite An-
alysis, however, is an attempt to provide a procedure for designing mod-
ules in a top-down manner with the aid of block diagram layouts based on
the detailing of the functions of the program. This technique is explained
in Volume VI.

These procedures must be treated as non-exact. They provide
general guidelines for the designer to follow, buJ still require a large
measure of experience and judgment on the part of L e program designer.
As a result, the specification of a formal procedure for generating CPOS
modules does not appear feasible. The use of a modular structure for CPOS,
however, is recommended because of the significant reliability benefits to
be gained.

7.3.2 Top-Down Design

As discussed in Section 2.1 of Volume II on software reliability,
the two most common causes of software errors are an incomplete or inaccur-
ate understanding of a program's function (i.e., by system implementors)
and logical errors in the construction of programs. Traditionally, these
types of errors have been difficult to detect during the implementation
phase (i.e., design and coding) and are often not detected until later in
the maintenance phase (i.e., after the system is operational). It is,
therefore, highly desirable to adopt a methodology during the implementa-
tion phase which minimizes the number of errors in this category and pro-
motes user/implementor understanding of the function of the system. Top-
down design is one such methodology.

A systematic approach such as top-down design is especially impor-
tant in a system such as the Unified Digital Switch, where security and
reliability are critical factors. Undetected errors, especially those that
compromise security, are particularly serious and implementation procedures
which help to eliminate such errors are important.

The use of top-down design during the implementation phase has two
major advantages as follows:

1) It promotes user/implementor understanding by reducing complex
tasks into functional components. This is accomplished by re-
fining the understanding of the task in layers of increasing

7-5

'• ^-^«^^1tiMI»^^->»l^»^-. - -,. .. ,,t „rt ,,

detail. Thus, users and implementors can review the design
as it develops with user participation in the critical early
stages.

2) It allows details to be deferred until after major components
have been analyzed and direction decided. In this way, time-
consuming detailed analysis ooes not begin until both the user
and implementor are satisfied that the design reflects the
system's requirements. Thus, major design flaws are encoun-
tered early in the process and rework is minimized. This
feature is especially useful on Government contracts where
the Government's technical personnel can review the direc-
tion of the design prior to the large scale commitment to
the implementation process.

We believe that the top-down design approach is an organizational
procedure which is useful during the CPOS implementation to enhance soft-
ware reliability. For this reason, the authors recommend that it be used
during the implementation phase of the CPOS.

7.3.3 Levels of Abstraction

Levels of abstraction is a computer system organizational technique
that can be used to partition complex systems into a hierarchy in which
modules at the same level bear some relationship to one another, usually
in terms of the control of resource^ (e.g., processors, input/output chan-
nels, paging drum, data structure, etc.). The key to understanding the
benefit of levels of abstraction is to understand the criteria used to
partition levels. The hierarchy organization is such that the lower levels
are more directly related to the hardware than the upper levels. Communi-
cations between levels are rigidly structured to permit upper levels to
initiate the activity of the lower levels and not to permit the reverse
procedure. For that matter, the functions of the higher levels are masked
from the lower levels which perform tasks in support of the higher levels.

There are two stages of development in the levels of abstraction
concept. First, partitioning of the system into levels (decomposition);
second, defining the hierarchy among the levels (hierarchical structure).
An effective method of performing the partitioning, as outlined by Parnas,
is to identify the critical components of the system, especially those
that are likely to change, and create a level around each of these compon-
ents. Thus, the relationship within each level and the relationship be-
tween levels will be easily understood (promoting reliability) and adapt-
able to change.

7-6

The selection of partitions for the levels is critical to deriving
the inherent benefits of the technique and depends on the application of
the computer system. The selection process should be guided by commonality
of function rather than oriented toward sequential events, as is common in
"flow chart" design systems. That is, the software should be organized by
selecting resources, particularly hardware, which should be hidden from
other levels of the computer system. Thus, access to the resource is
clearly defined, an aid to the generation and maintenance of reliable
software; and more easily controlled, an aid to assuring security.

Volume VI provides a design for CPOS based on the levels of abstrac-
tion approach. The partitioning into 22 levels as presented by Shanker and
Chandersekaram for a communication switch is used. A summary of levels,
objects realized, and hidden details is contained in Table 7-1. The de-
tails of the UDS application functions and system functions performed at
each level are contained in Volume VI.

7.4 DESIGN AIDS FOR IMPLEMENTATION

The complex task of coordinating the various phases of implementa-
tion of a large-scale program is greatly improved by the use of design aids.
A design aid is any scheme, computer program, or manual procedure that as-
sists the implementation staff in understanding and developing the computer
program. Design aids can be applied at any phase of development from pro-
gram initiation to its final stages. The objective of using design aids is
to simplify the implementation phase and to provide more reliable code.

These aids could be pictorial or graphic or could include text. If
the text is formalized, the design aid is capable of being automated.
Under a structured programming environment, where rules of coding are more
rigid, capability for automated design is enhanced and there is better
chance for improving the final product. Nevertheless, some phases of im-
plementation might require manual design aids.

The program design and implementation process can be divided into
functional parts as follows:

a. Function Analysis and Modular Specification
b. Data Base Requirements Analysis
c. System Architecture
d. Data Architecture
e. Control Structure Analysis
f. Coding.

7-7

-* • - - - •'- UmW .11 —

o
<o
i-

••->
CO
-O

0) >
cu
_l

,_ F
1 o>

t-». -M (/)
LU >>
—1 1/1
CO
<t C7>
h- e

CO

c
o

<o
U

c
3

O

c
IÖ 10 0 c

•1— •»— -r- tO CO 0
C- «3 J- (O +-> CU +-> •r-
CU -i- (O cu •<- <0 l/l O- • •(->

(0-*->t--'-'0-t->J-+J 103 (T3 L) (O
CU •r^r O fr-T Hl C CU t- -t- +J +J
o LL+IOILL+JOIWLl. S_ CU c
(O co>> aio-i-'paicj-r- g Qjx) a) cu

•»-> 1— C_> +-> i_T--»-> >-CUlOT3-t->cO-4->
CU

<*- CU * E
to </1 CO S— CO OuH'r >-,0 S_ -r- >>C_)f— 00 «E C CU T- to CU ,— .— r— CU «3 r gw L4J U L -P CCU t—i-i-s_ f— ,—

•r— OOPS) COCU O-r-C CO -i- C E t_ O UU 0 O-
<o o o c .— O-CO • 1— O O •— O >—' T3 •• ••— O E •*-> o o •—i cu fl V) Ol C 'r 'r~ C C 'r— T- T3 »—t CO 1— CD 0 •-• m -i-> -M or c«t c o-Q+->->- o-o+j >><: 5- O C 4->
o p p s. CO •<- -i- (O 3 IM •<- (13 3 S_ + O CU ••- 0 CU

5- S- O CU CU r— +JPU-1--P+JJ30ID to 4-) S- i~
c Q_0--4-> DIE C7> 3 «3 C-r-+J <D C •<-+-> Cn >, to Ol+J Q- 03
OJ «3 H3 CU(öt3T3=)l.CU-0 3S-0<Oi-CUC(0 s
X) 1_ •»-> i- 1_ 4J 00 0J ••- O +-> -J* •"- 0+->CUl_OOr-g CU TO
"O CU CO CU o 00 00 -C 1— U l/l Ui— OtoS-oEocnt- C i_
•r— 10 0 0-+-" >>jjo«!U'i-«)niU'i-'f--pais.ioo •1- ro
DZ 3IOH WSV)><QQ-XQaw>:Q.tt.u. _l 3:

CO 0 to
r— +-> s-
<o cu 0
c •t-J
C31 00 ^ - CX

••— co to to CU CO tO •!-
to l/l (/I III 11 CO l/l 4J W CU CU i-

•D •o CU C7I Ol •*->+-> C 00 01 0 u
CU c r— «<OIT3 cucu aiairo •1— to
IM <o ••- cototoul-^-i^ Eo co > CU

•r— to i/) E to U_ CUtOtOCU (_>OtO 00 CO CU 0
r— "O T3 E <U IOCUCUI3 ID 10 111 CUS- CU 0
«3 C C O i— +J ioszs;cu o.a 3 w coo. s: *
<u «3 <o O i~ C CU ~ 3 CU CU O to
or E E u- •1- UXJ-OO- TJT! 3T -OT3 TD *•>, -t-* E E s- OtOOCUCU cucucrs-cocucu CU •—1 a.
to O O O r- 0-CUS-+J+->CUlO-l-J+J O+^-t-1!— •*-> to 3
+-> o o +J ro ence 10 c; cn+-> foc:-i->+->c:rt33 +-> +-> « I_
o A3 C ^:iO TJ3HUIT3 3ll)U(ll>T3inro OWL
cu 1- +-> J_ L. Ocoi.-r-oio^:-'- OJ^CUS-'-CUflJE j«; cu CU

•""J CU CO CU =3 O l/l di— OtOOi— U U L tJPr OIL 0 c +J
XI to o Q- O raiwnjuaiiijmuiO'i-aiuuioo ID 1— C
o 3IOOUSD><ZQ.><aDW<UiaU. Q 1 >—•

z
o
»—1

1— t-
Z Z e£ 1— z
O O »— Z LU
»—4 »—I LU LU s;
h- h- or SI 1— LU
<<Ct t— UJZO

00 »— I— or ^ >- O U)<
e UUJÜJ Lu h- ^ <: 2: z
o or or I— 2: >—• ^ h— 1— Z LJ<

•r— o_ o- z LU _JO •—'ZZCCC32:
+J or or <-< t3 :z •—• •—1 IOLUS;<C
O LU UJ O co«s:ocoi— z •—11--2: zoo
<o h- I— O Z >-iZMe£DoOOail-LJI-<l/l 0
s- Z Z Z •-" (ö<HhtÜMM<DC3Z3Ilil z
4-> Ml-<0 U3UI3KZ'-'CO»— t— 0D< UJ O •—1

tO 2: z Z:E Q3D;CJ< Z "ZS:HO _J
XI Q o x «a:

Z Z O _l
•-'i-w«OhiD3Q:<iuzQ:o: Q

«a: t— ZCO_IOCOI— •—• O Y— 2TLULUQ.LU z
<X. <t <_> <c Z>-UJ<(J|-'Z-JUI/I i/i z: ocj3 «t <*- 2: 2: co •H|0UXQ><0>-'>- OD<Z :E

o 2: 2: or O 0 wXoaüJuiLJZM LU
0 0 0 _i Q_ LU en uj uj LU 0 ico i< I— _l 0;

to <_> <_} 1— <X. OQ.OOOl-1- 1— D— h- CO DZI- LU <;
r— **, z ^<C <<< LJlxl UJUJO< QQ <; Z 3
CU or l— or or UI/IKI/II/II/I^^ ^ynj^ujujujjx Z Q > LU CO LU :D uii/ibiini/iwouuLiaaxiuii: <a or
CU 00 0 0- 0 IUIOLJUJLLI<<<<>-'<'-'0<0 3: <:

_J 3ior5ujiDi:i:5:Q-o-Q-CLci>u-wau. O X

o
z

"cu >
CU

r-0(^oorvU)ui«ti,yipj>-ooicor^u3int}roM F- O

_l

7-8

^o. A

The first two functions listed above are not well suited to automa-
tion since they require analysis of the specifications to assure that mod-
ules and data structures conform to the specifications. A top-down pro-
gramming approach enhances this process.

The third phase, that of the specification of system architecture,
has features which can be computerized. In particular, if the architecture
is built on a top-down design principle, the system design forms a tree
structure and various mathematical algorithms are available to analyze and
optimize the system structure. Also, alternate structures can be compared
and contrasted. Similar possibilities exist for the development of the
data architecture.

An analysis of the control structure can be aided by the use of a
program design language (PDL) whose syntax is, in many ways, similar to
that of a higher order language but allows for embedded English descrip-
tive sentences. Any PDL can be considered as having two types of con-
structs:

1. Logical Constructs

a. Conditional Branching
b. Repeated Execution
c. Sequences

2. Modular Constructs

The logical constructs can be made compatible with structured pro-
gramming, and the modular constructs can be specified to finer levels of
detail as the system design develops. At these later stages the full re-
sources of automata theory could be brought to bear to develop automated
design aids. Of course, a system structure must be available to the PDL
program.

The minimal PDL is one which indicates flow and decision. Under
structured programming, the vocabulary of a small PDL contains constructs
for conditional branching, repeated execution and sequencing. The remain-
ing information is contained in imbedded English text which is not amen-
able to computerized analysis.

As the system and data architecture develop in the implementation
process, certain "established" modules and data are entered into the PDL
as part of its vocabulary and a "higher order" PDL results which has appro-
priate data references and modifiers. In the final stage of the process,
the modules are replaced by accurate HOL code.

7-9

MM Jfc • ii I i*. .IliM^J—IMMMMII—fcl—IMIIMIIIi !••" - in—•»

A gap exists, however, in the early stages of implenentation where
knowledge of the system and data structure is known to a reasonable degree,
but the PDL is too formal to accommodate that information. A useful tool
at this stage is some form of graphic presentation such as flowcharting or
HIPO. Any device which enhances the presentation of information about the
system is of value.

PDL and graphics thus can be used to complement each other at differ-
ent stages of the implementation process. In the early stages of the de-
sign process, graphics is of greater value, while at the later stages the
formality of the program design language is more important. Even during
this period, however, graphics serve a role as a means of overview or
summary.

The implementation process is also aided by various tools and pro-
cedures which help in its successful completion. These include the follow-
ing:

1. Compilation and debugging
2. Design and data file modification and update
3. Text editing
4. Job control
5. System descriptions and summaries.

Rather than have a ragbag of unrelated software tools, it is more
desirable to group them into one comprehensive package. It is also desir-
able that this package be capable of modification and expansion as the need
arises. This design "kit" could include automated software packages such
as an automatic documentation program, or automatic software design analy-
sis' programs. Such a group of design aids, organized into one system, is a
useful method of making all the tools available to the implementation team.
A manual is required which states how the various tools are accessed, how
the output is interpreted, the tools' limitations, and statements of pre-
cautions and caveats.

Another alternative, leading hopefully to program proving, is the
use of a formal design specification language. This language, sharing the
features of the language of mathematics, forces precision in design speci-
fications and eliminates or reduces ambiguity. Further, the formal char-
acter of the language allows computerization through which verification or
proof of correctness can be provided.

The design aids explained and evaluated in Volume VI are as follows:

7-10

—- -'•

a. Program Design Language (PDL)
b. Design Expression and Confirmation Aid (DECA)
c. Problem Statement Language (PSL)/Problem Statement Analyzer

(PSA)
d. Software Requirements Engineering Methodology (SREM)
e. Higher Order Software (HOS)
f. Programmer's Workbench (PWB)
g. National Software Works (NSW)
h. Hierarchy Plus Input, Process, and Output (HIPO).

The evaluation reported on in Volume VI indicated several alternate
implementation approaches and resulted in the following recommendations:

1. A free form Program Design Language offers sufficient advantaqes
to the specification of CPOS to make its use appropriate. The
Program Design Language used should incorporate the recommended
structured programming constructs.

2. A program module structure analyzer should be used. A good ex-
ample of such an analyzer is the Design Expression and Confirm-
ation Aid (DECA). A number of other analyzers are discussed in
this section and the selection of a particular one, however,
must be influenced by the computer selected for Unified Digital
Switch implementation.

3. In the event the Digital Equipment Corporation's PDP-11 is se-
lected as the CPOS development machine, the commercial avail-
ability of the Programmer's Workbench version of the UNIX sys-
tem (PWB/UNIX), offers significant advantages to the Government.
The PWB/UNIX software package offers a powerful off-the-shelf
development and word processing capability.

4. If contracting procedures permit, the availability of the
National Software Works (NSW) has the potential of offering a
large repertoire of useful implementation aids.

7.5 PROGRAMMING PRACTICES

An important component of the implementation phase leading to reli-
able software is the programming practices employed. Section 6 of Volume
VI is devoted to this subject. The areas discussed are higher order langu-
ages, structured programming, top-down programming, program debugging, and
the program support library.

7-11

_ - • -- . iiiliiiiiirn ,~—»to

7.5.1 Higher Order Languages (HOL)

Most coding for large systems is done today by means of higher
order languages (HOLs). The advantage of the use of a HOL is that the
coding can be accomplished with relatively minor regard to the machine on
which the software will run. A good HOL will reduce machine considerations
to a minimum and address itself, when necessary, to such problems by a
suitable modification or restriction of the language.

This does not imply that all coding must be done in a HOL. Possibly,
to improve efficiency and throughput in critical modules, these modules may
have to be coded in assembly language.

The choice of the HOL to be used for CPOS is based on a number of
factors including:

1. Programming experience with the language.
2. The ease of maintenance of the software for the ultimate user.
3. The compatibility of the HOL with structured programming

principles.
4. The capability to effect data manipulation and data packing

efficiently.
5. The production of efficient machine language code by a suit-

able composer.
6. The ability to verify code and prove correctness.
7. The availability of suitable compilers for target machines.

The use of structured programming is recommended as a good technique
to increase program reliability. It is necessary, however, to mitigate
some structured programming precepts in order to satisfy other Air Force
requirements for a communications oriented higher order language. The
Higher Order Language Investigation, a companion contract, has studied this
problem and, as a result of the analysis, has recommended a communications
extended version of the JOVIAL J73/I language called J73/C.

The JOVIAL J73/C language does not directly support all recommended
structured programming constructs. It does, however, support the basic
sequence, IFTHENELSE and DOWHILE constructs and the INCLUDE construct by
means of the !C0PY directive. The ENDIF and ENDDO delimiters must be in-
troduced as imbedded comments in J73/C. This would not allow for diagnos-
tic checks if the present version of the J73/C design is implemented.

The structured programming CASE construct can be simulated using the
JOVIAL SWITCH statement. The mechanism for accomplishing this is rather

7-12

• • llMJtM—a—llilnllMlMl I i II • - •• - —,..-^-^—***.:-,..•-.. .

simple, the insertion of a comma after each internal controlled statement.
However, the procedure is subject to programmer error. The inadvertent
omission of the comma at the statement end will result in executable but
incorrect code. The elimination of this hazard can be accomplished by com-
piler modification or by manual code review. The former approach is super-
ior and, therefore, recommended.

Also, the capability in J73 of having multiple statements per line
is not recommended. This feature violates the desirable indentation rules
of structured programming and, as a result, obscures the code presentation.
This problem can also be eliminated by a compiler modification or program-
mer directive. As in the case above, the former approach is recommended.

Lastly, the decision to use a precompiler to support the preparation
of CPOS must depend on the computer selected for the processor system and
the higher order language chosen. Basically, the decision must rest on the
availability of a suitable compiler which operates on the selected machine.

If the Government decides on the use of an existing machine, the
decision on the use of a precompiler depends on the availability of a suit-
able existing compiler for the selected machine or, alternatively, the dif-
ficulty of modifying an existing JOVIAL compiler which generates code for
the target machine. The precompiler approach should be considered only if
a significant cost savings can be achieved by using an available compiler.

7.5.2 Structured Programming

Plessey recommends that the use of structured programming be a
contractual requirement for the implementation of CPOS because under a top-
down programming environment it will enhance the implementation effect,
minimize programming errors (especially of the logical type), and facilitate
the production of more readable code. The last feature is due to the nest-
ability feature of structured programming which allows the capability of
indentation.

On the other hand, structured programming should be viewed at its
proper programming level. The constructs of structured programming are not

7-13

Jin in •• -^ i . mmmtm*mmmmm*m^*k»

necessarily to be viewed as HOL code. A rigid adherence to the "letter" of
structured programming could produce unnecessarily awkward HOL code. Thus,
an IFTHEN in HOL could be, in reality, a degenerate form of IFTHENELSE.
From this point of view, a discussion of the merits of IFTHEN is unnecessary.

The key features required of structured programming for our applica-
tion are:

1. Elimination of unconditional branches

2. Single entry and exit points for each structured programming
block

3. The use of three fundamental structures:

a) Sequence
b) IFTHENELSE
c) DOWHILE/DOUNTIL

4. Use of the optional structures of: CASE and INCLUDE

5. Enforcement of the nestability property.

This last property is what allows for the capability of indentation.

With regard to JOVIAL J73/C, note that most features are compatible
with the structured programming requirements and those that are not can be
made so by the introduction of a precompiler or a modification of its design.
The latter course is recommended unless significant cost savings can be
achieved by the former course.

7.5.3 Top-Down Programming

Top-down programming is a good approach for implementing modular
software systems, but is not without some problems for software implementors.
As indicated in Volume VI, the difficulty in using top-down programming lies
in the potential complexity of the stub structures which are required to re-
place lower level modules which have not as yet been prepared. The stubs
are needed to test control structures and to simulate data needed by the
module under test.

The top-down approach, however, is recommended over more conventional
procedures which attempt to integrate modules during a final integration

7-14

•i •• i»r • ... •• ' 'U "•—^

phase. The benefits to be gained by early integration as facilitated by
top-down programming are derived from increased reliability and, there-
fore, less subsequent rework.

In addition to the use of the top-down approach, we recommend the use
of structured programming for the benefits to be derived from increased
program reliability. Recently, software implementation methods have been
developed which combine the two techniques to provide an organized design
and implementation procedure which provides the benefits of both.

An interesting design documentation technique has been developed for
top-down structured programs called "Structured Control-flow And Top-down
programming structures," which has the acronym SCAT. The major benefit of
the SCAT approach is that the form of the presentation is similar to that
of traditional flowcharts. Since most programmers in the field today are
familiar with flowcharts, the transition to SCAT charts causes minimum
difficulty.

The basic building blocks of SCAT diagrams are described in Subsection
6.3.3 of Volume VI. Also described are the procedures used to document
top-down hierarchy levels and structured programming construct control
transfers. The program design in SCAT form appears clear and easy to fol-
low since it avoids the complex decision branching of standard flowcharts.

7.5.4 Debugging Tools

A variety of debugging aids have been evaluated in Volume VI that are
currently available, but the majority of these aids are designed for a
particular computer or higher order language. For this reason, most of
these design aids cannot be directly applied to CPOS implementation in
their present form, but they do contain features which are desirable.

After reviewing the various debugging aids, Plessey concluded that
the CPOS implementors will need, as a minimum, a facility to perform
overall and selected memory dumps. The following features will be useful
in such a program.

a. An interactive dump capability for displaying the contents of
memory locations at various stages during program execution.

b. A selective dump capability for displaying specific memory
locations.

7-15

• —.-.- - ^ ^t^^^.

c. Octal or hexadecimal data presentation as well as symbolic pre-
sentation for some applications.

d. Base 10 scientific notation of memory locations containing
floating point data.

Plessey has examined a variety of higher order languaoe debugging
aids and they believe that the approach exemplified by the Extendable
Debugging and Monitoring System (EXDAMS) is useful for CPOS implementation.
The major advantage of the EXDAMS approach is that it provides more flexi-
bility with respect to the types of debugging information it can supply,
than the other techniques examined. This results because EXDAMS creates
a history tape of the entire program execution which can be queried to
obtain a variety of useful debugging information.

The features considered useful for CPOS implementation and which
could be provided by a debugging aid such as the EXDAMS are as follows:

a. Statement-by-statement execution tracing.

b. Summaries of the number of times each statement is executed,
including the number of times each conditional branch is
fol1 owed.

c. A mapping capability between variables and the statements that
alter their values during program execution.

d. A listing of select variables and how their values changed dur-
ing the program execution.

e. A list of non-referenced variables.

f. Diagnostics in response to program interrupts caused by soft-
ware errors.

A useful feature which cannot be easily implemented with the EXDAMS
approach is the ability to change the value of variables at breakpoints.
This is difficult with the EXDAMS approach since the programmer interacts
with a history file of his program after the program execution is com-
pleted. Thus, an additional run-time interactive debugging aid would be
required to implement this capability.

Breakpoints are not necessary with an approach such as EXDAMS since
a complete history tape is created for the test run. The programmer can
query the system to obtain information about any point by means of the test
run record.

7-16

1

 '• • — —-"*•"""*--• • • — - A

1

In conclusion, good debugging tools are an important and necessary
aid to the preparation of a complex program, and CPOS is no exception.
The finding of subtle errors during the implementation process signifi-
cantly improves operational reliability and, as a result, decreases soft-
ware maintenance costs. We recommend, therefore, that the selection of
the UDS development computer and the HOL consider the availability of ade-
quate debugging tools and, if necessary, provide for the development of
such tools.

7.5.5 Program Support Library

Programming Support Libraries have evolved as a mechanism to aid in
the orderly development of Top-Down structured programs. The Program Sup-
port Library serves as a repository for data required to support the pro-
gramming process and is useful throughout the entire development process,
including the design, coding, testing, documentation and maintenance phases.
In addition, a Programming Support Library is an effective mechanism for
controlling and coordinating the development activities by providing a
facility for monitoring progress and determining that scheduled deadlines
are met.

A significant design advantage is that designers and programmers are
relieved of much of the burdensome, clerical procedures associated with the
project. Furthermore, coordination between project members is simplified
since all data concerning the system is available in the common library,
thus minimizing errors that result because of misunderstandings between
project members. Other advantages of the program support library are that
it is easier to shift personnel from one task to another to meet schedule
deadlines, it makes training of new personnel easier, and it minimizes the
effort required to perform technical audits of the system.

A Programming Support Library is a useful tool for CPOS develop-
ment for both the implementation and maintenance phases. A PSL is useful
to programmers since it automatically performs many tedious functions that
otherwise occupy the programmer's time. A PSL is useful to management
because it provides information about the current status of the project,
and is especially useful for the CPOS implementation because it can provide
the COTR with up-to-date information concerning the contractor's progress.
Similarly, a PSL can store and manage information and data required for
software maintenance. Software maintenance personnel will be able to access
current as well as previous versions of all programs and files.

7-17

. -•

A specification for a Programming Support Library is contained in the
RADC Structured Programming Series referenced in Volume VI. Plessey recom-
mends that a PSL should be used by the CPOS implementors which conforms with
the referenced document.

7.6 FORMAL DESIGN METHODOLOGY

A large-scale system is designed and implemented in many stages and
involves the efforts of many people (including programmers and managers).
A number of factors are considered and these are communicated to the design
and implementation team in the form of flow charts or other graphic repre-
sentations, English narrative description, PDL or HOL code, tabular summar-
ies and other ways. The end result of the implementation process is HOL or
assembly language code, user's manuals, graphic representation, and narra-
tive description. Determining the correctness of the software which results
from this process is usually a formidable job. Even if formal proof of
correctness is not required, the accountability of the software for its
intended purpose is still difficult to establish. The difficulty appears
to be that the various "descriptions" of the system are usually incomplete
or vague so that determination, let alone proof, of system correctness be-
comes a difficult job. A language that is precise and analyzable by the
computer would clearly help if it is adequate for design description. Such
a language is one which is mathematically based.

The design specifications for the CPOS system are capable of being
written in the formal language of the first-order predicate calculus. Being
a mat! jmatical language, it is capable of the exactness and precision neces-
sary for mathematical proof. The process does not, in essence, add any new
elements to the design process except the use of mathematical formality and
is not a panacea. It does, however, force the designer to be precise, re-
solve ambiguity and use a language which is amenable to computer analysis
and which offers the capability of being proved correct.

Even if formal proof of correctness is abandoned, the methodology of
formal design specifications can be used and verified informally as to cor-
rectness. The non-ambiguous nature of the specifications will give the in-
formal verification a greater measure of certainty and confidence. The
authors therefore recommend its use in specifying the critical sections of
CPOS such as the security kernel.

7-18

1

i

-»•--

8.0 VERIFICATION AND VALIDATION

Volume VII of the final report presents the results of the study of
software verification and security validation techniques performed under
Task 7. The base line for this study was the work performed under Task 2,
Software Reliability Study, and Task 3, Security Considerations Study.

The Reliability Considerations Study contains a number of ideas and
concepts which can be used to enhance the reliability of an operating sys-
tem. Task 7 developed the most promising concepts pertinent to assuring
the correct operation of the CPOS and resulted in recommendations specific
to CPOS verification and validation.

The Security Considerations Study explored the special problems of
providing multilevel security in the communications processor system envir-
onment. It detailed various methods for obtaining and maintaining the re-
quired securie software. The objective of the verification and validation
study is, however, to provide a means for verifying the security of the
operating system regardless of which techniques are used to establish the
secure environment.

8.1 SECURITY VERIFICATION METHODOLOGIES

A number of different research teams have been investigating the
question of verifying that a computer system is secure. Each of these
teams has selected a model of a secure system as a starting point, very
often choosing the Bell and LaPadula model.

Four of these techniques are of sufficient development to merit
consideration for verifying the security system of the CPOS. Two of these
techniques were developed by teams at the MITRE Corporation. One uses a
security kernel approach and was developed by a team headed by J. K. Mi 11 en.
The second was developed by D. E. Bell and E. L. Burke. SRI International
has also developed a technique which is of interest and has much in common
with the two by MITRE. The last method described takes a different approach.
Proposed and developed by D. E. Denning of Purdue University, this technique
was developed for a more general class of security systems, of which mili-
tary-style security is a subset.

8.1.1 Reference Monitor Method

J. K. Mi lien has proposed and demonstrated a validation technique
based on the concept of a reference monitor. This method relies on the use
of formal specifications which are reduced to tables of security relation-
ships. These relationships are then proven.

8-1

_-

The reference monitor, or security kernel, is a level of abstrac-
tion which is immediately above the level of the hardware. It is this code
which controls access to all of the objects in the system. Higher level
processes send requests to the reference monitor to perform any function
which might have security related aspects. Some of the functions which are
provided by a reference monitor are:

a. Create or activate an object
b. Delete or deactivate an object
c. Give a subject permission to access an object
d. Remove a subject's permission to access an object
e. Change security level of a deactivated object.

This list of functions does not provide a complete set. Depending
upon the exact design of the reference monitor, a number of other functions
must also be added.

It is required that the reference monitor be able to protect it-
self. For this reason, it utilizes the privileged instruction mode of the
hardware. Any other features which affect the integrity of the reference
monitor or allow a higher level process to bypass the reference monitor
must be reserved for the exclusive use of the reference monitor.

Some system designers feel that certain security related functions,
such as initial classification of incoming data, is best handled outside of
a security kernel. This creates a need for "trusted subjects" which, al-
though they do not obey all of the axioms of the secure system, provide
necessary functions which help to maintain a secure operation. Although the
security properties of these trusted subjects must also be proven, they are
not included in the reference monitor and must be proven independently.

In order to be able to validate the security properties of the
reference monitor, this approach proposes the use of two levels of written
specification. Both levels must present exactly the same virtual environ-
ment to the user; the entire difference between them rests upon the degree
of detail involved. The higher level of specification describes the secur-
ity properties of the reference monitor. The lower level describes the soft-
ware implementation of these properties.

8-2

ft • ., ...

8.1.2 S.R.I. Method

A group of researchers at SRI International, consisting of R. J.
Feiertag, K. N. Levitt, P. G. Neumann, and L. Robinson, have also been in-
vestigating the problem of validating operating system security. In their
initial work, an attempt was made to avoid the use of a mathematical model
of a secure system or the use of a reference monitor. This research proved
not to be viable. Because of this, they adopted a modified version of the
mathematical model of D. E. Bell and L. J. LaPadula.

The Bell-LaPadula security model contains a formal definition of
security as explained in Volume VII. To this definition, the group at SRI
has added a concept of integrity which is the dual of Bell and LaPadula's
security. According to their model, security is intended to prevent the
reading of information by unauthorized subjects, while integrity is intended
to prevent the destruction of information by unauthorized subjects.

The security conditions require that the security level of each ob-
ject be greater than or equal to the security level of the writer and be
greater than or equal to the security level of any other objects whose con-
tents were read to provide the value to be written. The dual of this, the
integrity conditions, require that the integrity level of each object be
less than or equal to the integrity level of the writer and be less than
or equal to the integrity level of any other objects whose contents were
used to derive the value to be written.

The methodology involved is based upon a five level system design
process. The initial level of this process is to define the interface to
the operating system as seen by the user. The second level takes these
modules and subdivides them into a hierarchical structure consisting of a
number of different levels similar to Dijkstra's levels of abstraction
concept. The next stage creates -ormal specifications for each of the
modules and submodules of the hierarchy. The fourth level of their system
design process is the creation of mapping functions which designate the
state of a module in terms of the states of modules on the lower level upon
which a given module depends. The fifth and final level implements the
module specifications as actual executable code.

The SRI team's validation effort is based on these specific system
development stages. Each of these stages has specific properties which must
be verified. On the first level, these properties are the security and in-
tegrity conditions, along with the other axioms of the secure system model.
On the next level, consistency of the hierarchical structure must be shown.
On the third level, each of the module specifications must be shown to be

8-3

_ . . —i—i a.i ^>imm*^mu*i*m

complete and consistent. The mapping functions of the fourth level must
then be shown to be consistent with the hierarchical structure and with the
module specifications. At the last level the actual programs must be shown
to be consistent with the mapping functions and with the module specifica-
tions.

8.1.3 Bell-Burke Method

D. E. Bell and E. L. Burke have proposed another method of validating
the security properties of a software system. They introduce the concept of
a validation chain which is used to link the model of an ideal secure mach-
ine to the actual implementation. The chain consists of a number of steps
and to show that each adjacent steps in the chain are logically equivalent
is sufficient to validate the entire chain.

The starting point of the chain is a mathematical model of a secure
system. It first must be shown that the formal specification corresponds to
the model, then that the software specification corresponds to the formal
specification and, finally, that the usable machine corresponds to the soft-
ware specification.

Bell and Burke believe that having only these steps in the chain is
not always enough to make the validation process easy to accomplish and
understand. They state that the length of this chain need not be fixed at
four steps, but may be expanded as required. For example, several addi-
tional sets of increasingly more specific and implementation dependent spec-
ifications may be included before the usable machine step. It has been
suggested that the hierarchical decomposition used in the SRI method be
included as a step in the chain, either before the formal specification
step or immediately following it.

This method of validation offers the advantage that the number of
steps in the chain can be made large enough that the correspondence becomes
easy to understand. If each step is represented by a finite state automata,
in order to demonstrate validation using this method, all that is required
is to show that all of the state changes in one step correspond to all of
the allowable state changes of the previous block.

8-4

8.1.4 Denning Method

D. E. Denning has proposed a different method from those discussed
above. She has devised a method which is relatively independent of the
methodology used to design the system and of the language used to imple-
ment it. As a basis, she has defined an information flow model and from
this, she has derived a lattice to represent the secure model of an oper-
ating system. This method appears to be more mathematically rigorous and
far easier to use than those previously described.

Most of the previous research has utilized the Bell and LaPadula
model of a secure system as a starting point. D. E. Denning begins with
an information flow model which appears to be far more general. With D.E.
Denning's method, there is no restriction upon the methodology used to de-
sign the system. There are almost no restrictions upon the language used.
Of the four mechanisms discussed, this is probably the easiest to implement.
The Denning technique is described more fully in Volume VII.

8.2 SOFTWARE VERIFICATION TECHNIQUES

Once software has been written, it becomes necessary to establish that it
does, indeed, function as intended. Volume VII explores the problems of
showing that a program does function correctly, and of establishing the
appropriate level of confidence in this demonstration. The first part of
this analysis investigates the question of formally proving a program.
Proving software has received a considerable amount of attention recently;
its very name has inherent appeal. The second part of the discussion deals
with the subject of symbolic execution. Symbolic execution is one of the
tools used in both program testing and program proving, but is a tool with
which few programmers appear to be familiar.

8.2.1 Program Proving

Program proving offers a tool for use in trying to establish the reli-
ability of a program, but the tool is still weak. It does not as yet ful-
fill the extensive claims made for it. Research in this area has been con-
tinuing since 1967, when A. W. Floyd published his paper. The basic tech-
nique postulated by Floyd has received some elaboration, but it still re-
mains basically unchanged; slow, cumbersome, uncertain and messy. With
these deficiencies, it is not likely that any dramatic breakthroughs will be
seen in the time frame applicable to CPOS development.

8-5

..— ^-

V

There is also a major difference between proofs of programs and mathe-
matical proofs. When a mathematician successfully proves some new theorem,
he publishes it in a journal. This journal is sent to hundreds or thousands
of other mathematicians, some of whom will read and study this proof to de-
cide whether it is of value in their research. If they find an error in the
proof, the author will be quickly informed. Program proofs, on the other
hand, will not receive this kind of scrutiny, in most cases, because they are
of interest to virtually no one outside the project group. In other words, if
a program proof contains an error, who is going to find it? One must con-
sider the fact that program proving is at least as complex an intellectual
activity as programming; therefore, a proof is as likely to contain an error
as is the program being proven. In addition, because of the complexity of
the program proof, it is probable that an error in the proof will not be
found until a failure has occurred.

Program proving cannot be used to show conclusively that a program
will perform as expected. There are simply too many variables, and in at-
tempting to take them all into account, the proof of a relatively simple
program can take several man-years to complete. Program proving techniques
may prove to be useful, however, as a limited tool for detecting potential
errors due to logical inconsistencies. This is especially true as attempts
to have the computer generate the proofs become more successful .

Until research produces strong, automated proving systems, we believe
that program proving is of limited value to the UDS effort and, therefore,
recommend that formal proofs not be required.

8.2.2 Symbolic Execution

Symbolic execution is the process of using the computer to simulate
the execution of a program using symbols in the place of actual data values.
These symbols may represent any possible numeric value, or they may be con-
strained to a limited group of values, such as all values less than ten.
Symbols are usually assigned as parameters by input statements or by the
entry statement of the routine.

Symbolic execution has been used as a tool in several different lines
of research in computer science. The most basic use is in testing programs
which are under development. Another related line of research that it has
been used in, is the generation of data set test cases. It has also been
used as a tool in automated program proving, and as a tool for determining
the specifications for existing, undocumented programs.

8-6

The authors v<_.,<;ve that symbolic execution has been shown to be a
viable, although still experimental, tool in the repertoire of the profess-
ional programmer. As with any tool, its use has both advantages and dis-
advantages, depending upon the way it is used. Three of the uses explored
in Volume VII related to the CPOS design effort are proaram testina, data
case generation, and program proving.

At present, many of the theorem proving routines require user assist-
ance to manipulate the symbolic formulas for the variables and the path con-
dition into the form of the exit assertions. Even more basic, most of the
symbolic execution systems require user guidance in path selection, with
loop structures being a major case in point. Any program with a multitude
of internal paths threatens to cause the execution to run virtu? "v end-
lessly, unless appropriate path guidance is provided. Before sy, ')lic exe-
cution can be recommended for use in validating programs, extensive research
in program proving is required, and it is doubtful that this research will
produce meaningful results within the time frame of the UDS development
effort.

The use of symbolic execution systems to generate test data cases has
not been shown to be effective as evidenced by research using the DISSECT
system. Volume VII explains DISSECT as well as several other systems The
basic problem is that a test data case only shows that the program will work
for that test case. Generalizing a single case to show that the program
will work for the input class of a program path is often difficult to demon-
strate. Symbolic execution may be useful to the CPOS developers to generate
test data during program development, but we cannot recommend this technique
for final acceptance testing for these reasons.

As a tool for program development testing, symbolic execution offers
a wealth of information to the programmer. It is particularly useful in
solving the difficult problem of keeping track of the selection of the vari-
ous alternate paths through the program. We recommend the use of symbolic
execution in this application.

Plessey also recommends that the use of symbolic execution be included
in the design of the higher level language processors to be used in coding
the CPOS. The system should be batch oriented along the lines recommended by
W.E. Howden, L.J. Osterweil, and L.D. Fosdick, which are discussed in Volume
VII.

8-7

1

.

8.3 TESTING

Since program correctness proving does not appear to be a practical
technique for validating the CPOS, we are left with the need for good pro-
gram testing. In many past cases, testing of large software systems was
incompletely performed or was excessively expensive. It was not unusual
for a relatively simple routine to take as long to test and to debug as it
took to design and code.

An error in a program can be corrected in the design phase relatively
cheaply. Once coding has commenced, the cost begins to rise rapidly because
of the recoding which will have to be performed. After the system has been
integrated, correcting an error may create expensive cost and time overruns.
If the software has been delivered, the correction not only involves money
and man-hours, but also the secondary costs due to downtime and loss of
service.

Because of the expense involved in testing, programming techniques
have been developed which attempt to minimize both errors and testing.
These techniques include top-down design, modularization or segmentation,
design reviews, structured programming, program proving, and program simu-
lation.

8.3.1 Test Plans

In order to test soiv„are effectively and to establish a level of con-
fidence in the software, testing should not be done in an ad hoc man.ier. Un-
less testing proceeds according to some clearly defined plan, testing will
likely be delayed until the very end, and will then be conducted in a rather
haphazard manner. The completeness of testing will be a function of the
time available, and that is usually insufficient. The results of an un-
planned testing approach are systems that are unreliable.

The use of a test plan helps assure success during the testing phase.
The test plan is a document which is prepared with the functional specifica-
tions for the software. If a top-down design approach is taken, a test plan
should be written for each successive level of specification. As the soft-
ware specifications grow and change, the test plans must also change.

The level of confidence which one has in a given piece of software is
always somewhat subjective, and is affected by the thoroughness of testing
and the probability of finding more latent errors in the future. These

8-8

 J

imtmv.

items can, and should, be measured quantitatively and then be compared
against some standard. This is the function of the reliability models dis-
cussed in Volume II.

8.3.2 Static Testing

Testing can be divided into two categories: static and dynamic.
Static testing uses procedures which do not require execution of the code.
This is usually the first phase of testing and can be divided into three
parts: precompilation testing, compiler testing, and testing by a static
program analyzer.

Precompilation testing consists of manual tests performed on the pro-
gram code before an attempt is made to compile the code. This phase was
more important in prior years when the cost of computer time was expensive.
As the price of computers decrease and speed and efficiency increase, this
type of testing is emphasized less.

Compiler testing is the next phase of the testing process. The com-
piler is a useful and powerful code testing tool. In order to produce exe-
cutable machine code, a compiler provides syntactic and semantic analysis of
the source code.

The rules of structured programming have been shown to lower the inci-
dence of error. Two of these rules can be easily and inexpensively enforced
by a compiler. These are the rules which restrict the use of the uncondi-
tional branch statement and which forbid the modification of a loop itera-
tion control variable while inside the loop.

The static analyzer is designed to complement and extend the static
testing performed by the compiler. Since there is no guarantee that a pro-
gram has been successfully compiled before it is used as input to the static
analyzer, there must be some overlap between the two testing tools. Testing
with the static analyzer, however, is usually more rigorous.

The static analyzer can detect many types of errors relatively
quickly and efficiently. The information revealed, especially by the static
flow analysis, can simplify and shorten the time spent performing the more
expensive dynamic testing.

8-9

... -:_ ..-.^-J.—,. _ ^

8.3.3 Dynamic Testing

Some types of errors, particularly those sensitive to timing, are not
revealed during static testing but require execution of the code for detec-
tion of errors. Dynamic testing is thus required. This involves establish-
ing a suitable environment for the software under test and providing test
data, either real or symbolic, while using some means of instrumentation to
observe the software module's behavior. A number of different tools exist
which can provide both the necessary environment and the means of instrumen-
tation, and these are discussed in Volume VII. Dynamic testing can be sub-
divided into three phases: data generation, cest run, and test output eval-
uation. Selecting the test data cases is, however, the most critical aspect
of testing.

The testing criterion to be used in testing the CPOS must be suffi-
ciently rigorous to execute each branch at least once. We do not believe
that many CPOS routines will require testing of critical values by the tech-
niques explained in Volume VII. Those that do, however, require special
value testing in addition to path testing.

8.3.4 Debugging

Interactive debugging tools are often used to provide two distinct
functions: program testing and program debugging. These terms are often
used synonymously, but they have different meanings. Program testing is the
process of locating errors, or "bugs," in a program. Program debugging is
the process of correcting those errors. In a batch-oriented environment,
the separation of these functions is enforced by the job-oriented nature
of the system. The interactive environment allows the user to switch back
and forth between testing and debugging at will: test, find an error, cor-
rect it, and test again. Interactive debuggers assist the programmer in
making this transition by providing a number of useful features.

It is recommended that the debugger for the CPOS be implemented in a
manner which allows the user to switch between interpretive execution and
direct execution at will. The monitoring techniques described in Volume VII
provide a necessary and useful window on the operation of the code being
tested. It is recommended that as many as possible be included in the debug
package for the CPOS.

8-10

• (••>»!-"---"• »-• -~"—-^-—^- • ... • • • -- .~^a»lf«fcau^»^ Jj

.

8.3.5 Performance Testing

Performance testing is not designed to find coding errors as is the
case for static and dynamic testing, but rather to measure efficiency,
throughput, and error recovery performance.

Some performance monitoring probes are designed to provide "coarse-
grained" data while others provide more detailed "fine-grained" data. Both
types of monitoring probes are required for the CPOS. The data usually
collected includes the frequency with which a process is created and des-
troyed, the procedures the process executes, the amount of time the process
has use of a processor, the amount of time a process waits in various job
queues, and what other resources the process utilizes. Sources of data for
the monitors are generally system software probes, input/output device reg-
isters, specialized monitoring hardware, and specially designed software.

Other types of data can be gathered by the performance monitoring
probes such as parameters passed between modules, calls to the security
mechanism, page and segment faults, internal program paths execution, and
DO loop activity.

The problem of obtaining statistically significant results is a chal-
lenging one. Event simulations are essentially statistical experiments,
and it is often difficult to be sure in any particular case that the run
has been long enough to be truly representative of the real world. Despite
these difficulties, event simulators have proven to be indispensible tools
in the design and evaluation of communications systems and, particularly,
in the area of network and switch node modeling. A number of simulation
models exist and are operated by the Air Force and the Defense Communica-
tions Agency. Event simulation data is useful in improving CPOS perform-
ance in terms of its capacity to handle its workload. This is particularly
true as the implementors "tune" the design to maximize performance and
efficiency.

Plessey recommends that on-line testing be built into the design of the
CPOS. It is specifically recommended that boundary checks be applied to
the indices involved in each matrix or table reference. The range of the
parameters and returned values of each subprogram call should be checked,
where practical. Further,they recommend that range testing be applied to
entry points to and exit points from the CPOS and at the entry to and exit
from critical sections within the CPOS. It is recommended that state check-
ing be employed only if the hardware architecture design is not capable of
enforcing the use of small domains of protection.

t

8-11

- * *tm*m —~- — -"-*•—-»^-"-- - • ••• • A

MISSION
of

Rome Air Devefopment Center

RAVC plans and executes research, development, test and
selected acquisition programs in Support ol Command, Control
Communications and Intelligence (C3I) activities. Technical
and engineering support within areas o<{ technical competence.
is provided to BSV Program Ofäices [VOs) and other ESO
ei.eme.ntt>. The. principal technical mission areas are
communications, °lectÄ.omagneti.c guidance and control, sur-
veillance oh gro, -A and aerospace objects, intelligence data
collection and hundling, information system technology,
ionospheric propagation, solid state sciences, micA.oim.ve
physics and electronic rellabiLity, maintainability and
compatibility.

°v*x*nz#x*fxjr&tn^^

J

